▶ MARS M. YAMALEEV, Splitting properties in 2-c.e. degrees.

Department of Mathematics, Kazan State University, 18 Kremlyovskaya St., Russia. *E-mail*: marsiam2@yandex.ru.

A Turing degree **a** is splittable in a class of degrees C avoiding an upper cone of a degree **d** if there exist degrees $\mathbf{x}_0, \mathbf{x}_1 \in C$ such that $\mathbf{a} = \mathbf{x}_0 \cup \mathbf{x}_1, \mathbf{x}_i < \mathbf{a}$ and $\mathbf{d} \leq \mathbf{x}_i$ for i = 0, 1. The following theorem presents sufficient conditions for a properly 2-computably enumerable (2-c.e.) degree to be splittable in \mathbf{D}_2 avoiding the upper cone of another properly 2-c.e. degree.

Theorem 1. Let \mathbf{a} and \mathbf{d} be properly 2-c.e. degrees such that $\mathbf{0} < \mathbf{d} < \mathbf{a}$ and there are no c.e. degrees between \mathbf{a} and \mathbf{d} . Then the degree \mathbf{a} is splittable in \mathbf{D}_2 avoiding the upper cone of \mathbf{d} .

Theorem 1 holds when **d** is a Δ_2^0 -degree, which does not contain c.e. sets. Theorem 2 states that the well-known bubble (see [1]) can be constructed in low 2-c.e. degrees.

Theorem 2. There exist low noncomputable 2-c.e. degrees $\mathbf{b} < \mathbf{a}$ such that for any 2-c.e. degree $\mathbf{v} \leq \mathbf{a}$ either $\mathbf{v} \leq \mathbf{b}$ or $\mathbf{b} \leq \mathbf{v}$.

As a consequence we obtain the following: the partial orders of *m*-low c.e. and *m*-low 2-c.e. degrees are not elementarily equivalent for any $m \ge 1$. Also, I will talk about a link between splitting properties (Theorem 1) and the bubbles and how the link could be uniformly adapted to higher levels of the Ershov's hierarchy.

[1] ARSLANOV M.M., KALIMULLIN I.SH., LEMPP S., On Downey's conjecture., The Journal of Symbolic Logic, to appear. (http://www.math.wisc.edu/ lempp/papers)