MAXIM ZUBKOV, Strongly η-representable sets and limitwise monotonic functions. Department of Mechanics and Mathematics, Kazan State University, 18 Kremlyovskaya St., Russia.

E-mail: Maxim.Zubkov@ksu.ru.

We consider strongly η -representable sets. An infinite set $A = \{a_0 < a_1 < \ldots\}$ is called η -representable, if there is a computable linear order L of the order type $\eta + a_0 + \eta + a_1 + \eta + \ldots$, where η is the order type of rationals \mathbb{Q} . R. Downey [1] stated the question of a description of Turing degrees with strongly η -representable sets. For details see [1] and [2]. We proved that any Turing degree contains a strongly η -representable set iff it contains a range of a **0'**-limitwise monotonic and pseudo increasing on \mathbb{Q} function. A function F is **0'**-limitwise monotonic, if there is a **0'**-computable function $f : \mathbb{Q} \times \omega \to \omega$ such that $F(x) = \lim_s f_s(x, s)$ and $f(x, s) \leq f(x, s+1)$. A function F is pseudo increasing on \mathbb{Q} , if it is increasing on the support of F. A support of F is $\{q \in \mathbb{Q} \mid F(x) > 1\}$.

[1] DOWNEY R. G., Computability theory and linear orderings, Handbook of computable algebra, vol. 2 (1998), Amsterdam: Elsevier, pp. 823–976.

[2] HARRIS K., η-representations of sets and degrees, Journal of Symbolic Logic, vol. 73 (2008), pp. 1097–1121.