- ALAN R. WOODS, On the probability of absolute truth for And/Or Boolean formulas. School of Mathematics and Statistics, University of Western Australia, Crawley W.A. 6009, Australia.
E-mail: woods@maths.uwa.edu.au.
An And/Or formula such as $\left(\left(X_{1} \vee \bar{X}_{2}\right) \wedge X_{3}\right) \vee\left(\bar{X}_{1} \wedge X_{3}\right)$ is a Boolean formula formed from literals using binary \wedge and \vee connectives (and brackets). Its size m is the number of occurrences of literals. ($m=5$ in the example.) Suppose the variables are drawn from among X_{1}, \ldots, X_{n}. Let T_{m} denote the total number of And/Or formulas of size m in these n variables, and T_{m} (True) be the number of these which are tautologies. A natural definition of the probability of a tautology is

$$
P_{n}(\text { True })=\lim _{m \rightarrow \infty} \frac{T_{m}(\text { True })}{T_{m}} .
$$

A second natural notion of probability is defined by generating a formula by means of a Galton-Watson random branching process. Throw a fair coin. If it is heads, throw a fair $2 n$-sided die to choose a literal and then stop. If it is tails, throw the coin again to choose \wedge or \vee as the principal connective; then repeat the process to construct the left and right subformulas. Let $\pi_{n}(T r u e)$ be the probability that the formula generated is a tautology.

Theorem 1. (With Danièle Gardy [1].) $\pi_{n}($ True $)<P_{n}($ True $)$ for all n.
Theorem 2. $\pi_{n}($ True $) \sim \frac{1}{4 n}$ and $P_{n}($ True $) \sim \frac{3}{4 n}$ as $n \rightarrow \infty$.
The probability that a random formula defines other simple Boolean functions such as a literal (as in the example above) can also be analysed.
[1] Danièle Gardy and Alan R. Woods, And/or tree probabilities of Boolean functions, In: 2005 International Conference on Analysis of Algorithms (Conrado Martínez editor), Discrete Mathematics and Theoretical Computer Science Proceedings, vol. AD (2005) pp. 139-146.

