- THANASES PHEIDAS, KARIM ZAHIDI, Elimination Theory for Addition and the Frobenius Map in Rings of Power Series.
Department of Mathematics, University of Crete, P.O. BOX 4107, Heraklion, Crete, Greece.
E-mail: pheidas@maths.uoc.gr.
E-mail: zahidi@logique.jussieu.fr.
We present progress towards a positive answer to the following question:
Question 1. Let \mathbf{F}_{q} be a finite field of characteristic p, with $q=p^{n}$ elements. Let t be a variable. Let \mathbf{P} be a one-place function-symbol and $+a$ two-place function symbol. Consider the theory $T_{\mathbf{P}}$ of $\mathbf{F}_{p}[[t]]$ in the language $L_{\mathbf{P}}$ with non-logical symbols the elements of $\{+, \mathbf{P}, 0,1, t\}$, the interpretation of \mathbf{P} is the Frobenius map: $\mathbf{P}(x)=x^{p}$, + represents usual addition and $0,1, t$ the usual elements of $\mathbf{F}_{q}[[t]]$. Is the theory of $T_{\mathbf{P}}$ model-complete?

We will discuss various interconnections with similar past results and current research goals. Some of these are the following.
(a) It is unknown whether the theory of $\mathbf{F}_{q}[[t]]$ as a ring (with the structure of addition and multiplication) is decidable. This contrasts the known result that the theory of $F[[t]]$ is decidable if F is a field of zero characteristic with a decidable theory (results of Kochen). Our results concern obviously a sub-theory of the ring-theory of $\mathbf{F}_{q}[[t]]$.
(b) We have showed in the past that the similar structure on a ring of polynomials $\mathbf{F}_{q}[t]$ is model-complete (hence decidable). This implies that in the structure of $\mathbf{F}_{q}[t]$ in the language which results by replacing \mathbf{P} by a symbol \mathbf{D} for differentiation $(\mathbf{D}(x)=$ $\left.\frac{d x}{d t}\right)$, every formula is equivalent to an existential formula of $T_{\mathbf{P}}$. This provides an effective elimination theory for the structure of $\mathbf{F}_{q}[t]$ with addition and differentiation. If the answer to the Question above is positive, the similar statements hold for $\mathbf{F}_{q}[t t]$. We are interested in knowing to what extent this elimination can be achieved uniformly in n and in p (i.e. as n and p vary). Our ultimate goal is to investigate the structure of addition and differentiation in ultra-products of rings $\mathbf{F}_{q}[t]$ and $\mathbf{F}_{q}[[t]]$. We intend to apply such knowledge to geometric questions that amount to relating the solutions of the reductions modulo p of a linear algebraic differential equation with coefficients in $\mathbf{Z}[t]$, as p varies.

