• THANASES PHEIDAS, KARIM ZAHIDI, Elimination Theory for Addition and the Frobenius Map in Rings of Power Series.

Department of Mathematics, University of Crete, P.O. BOX 4107, Heraklion, Crete, Greece.

E-mail: pheidas@maths.uoc.gr.

E-mail: zahidi@logique.jussieu.fr.

We present progress towards a positive answer to the following question:

QUESTION 1. Let \mathbf{F}_q be a finite field of characteristic p, with $q = p^n$ elements. Let t be a variable. Let \mathbf{P} be a one-place function-symbol and + a two-place function symbol. Consider the theory $T_{\mathbf{P}}$ of $\mathbf{F}_p[[t]]$ in the language $L_{\mathbf{P}}$ with non-logical symbols the elements of $\{+, \mathbf{P}, 0, 1, t\}$, the interpretation of \mathbf{P} is the Frobenius map: $\mathbf{P}(x) = x^p$, + represents usual addition and 0, 1, t the usual elements of $\mathbf{F}_q[[t]]$. Is the theory of $T_{\mathbf{P}}$ model-complete?

We will discuss various interconnections with similar past results and current research goals. Some of these are the following.

(a) It is unknown whether the theory of $\mathbf{F}_q[[t]]$ as a ring (with the structure of addition and multiplication) is decidable. This contrasts the known result that the theory of F[[t]] is decidable if F is a field of zero characteristic with a decidable theory (results of Kochen). Our results concern obviously a sub-theory of the ring-theory of $\mathbf{F}_q[[t]]$.

(b) We have showed in the past that the similar structure on a ring of polynomials $\mathbf{F}_q[t]$ is model-complete (hence decidable). This implies that in the structure of $\mathbf{F}_q[t]$ in the language which results by replacing \mathbf{P} by a symbol \mathbf{D} for differentiation ($\mathbf{D}(x) = \frac{dx}{dt}$), every formula is equivalent to an existential formula of $T_{\mathbf{P}}$. This provides an effective elimination theory for the structure of $\mathbf{F}_q[t]$ with addition and differentiation. If the answer to the Question above is positive, the similar statements hold for $\mathbf{F}_q[[t]]$. We are interested in knowing to what extent this elimination can be achieved uniformly in n and in p (i.e. as n and p vary). Our ultimate goal is to investigate the structure of addition and differentiation in ultra-products of rings $\mathbf{F}_q[t]$ and $\mathbf{F}_q[[t]]$. We intend to apply such knowledge to geometric questions that amount to relating the solutions of the reductions modulo p of a linear algebraic differential equation with coefficients in $\mathbf{Z}[t]$, as p varies.