▶ LOES OLDE LOOHUIS, Games for multi-player Logic, and Logic for multi-player Games.

Department of Computer Science, The Graduate Center, The City University of New York, 365 Fifth Avenue, USA.

E-mail: 1.oldeloohuis@gmail.com.

Following previous work by Abramsky(2007), Tulenheimo and Venema(2007) (for full references, see [1]) and ourselves [1], we develop a multi-player logic MPL_R for rational players. The syntax of MPL_R is as follows:

 $\phi ::= p \mid (\phi \lor_i \psi) \mid \neg_{ij} \phi,$

where $i, j \in A$, the set of players. Formulas of MPL_R describe games, where \forall_i is a choice operator for player i and negations, of the form \neg_{ij} , permute the roles of players i and j. A valuation assigns to each proposition letter a set of winners.

 MPL_R can be seen as a generalization of two-player game semantics of propositional logic. We show that the complexity of MPL_R is linear in the general case, but if we impose some (reasonable) restrictions to the valuation function, it becomes

NP-complete. Also, a completeness result for a functionally complete extension, MPL_R^+ , of MPL_R will be shown. The logic MPL_R^+ contains two families of negations that are the same in the classical two-player setting.

The fact that we assume rationality of the players allows us to study the logics from a game theoretical perspective. Each extensive form game can be described by a formula of MPL_R and we compare our semantics to various solution concepts from game theory. In particular, we will show that if a backward induction solution to the game exists, this will be the semantic value of its formula. We illustrate this point by analyzing some well-known games like the Centipede game within our framework.

[1] LOES OLDE LOOHUIS, Multi-Player Logics ILLC publication series, (2008),
no. MoL-2008-07. url: http://www.illc.uva.nl/Publications/ResearchReports/MoL-2008-07.text.pdf