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I will talk about low linear orderings with computable presentation. An X-com-
putable linear ordering is called low, if X ′ ≤T ∅′. C.G. Jockusch and R.I. Soare [5]
proved that any noncomputable c.e. degree contains linear ordering with no computable
presentation. Therefore, there exists a low linear ordering with no computable copy.

R.G. Downey, M.F. Moses [2] proved that any low discrete linear ordering has a com-
putable copy (a linear ordering is called discrete, if any elemenet has both a successor
and a predecessor). It is a natural to ask (R.G. Downey, [1]) — is there a property P
of order types which guarantees that if L is low and P (L) then L has a computable
presentation?

The author [4] proved that any low strongly η-like linear ordering is isomorphic
to a computable one (a linear ordering L is called strongly η-like, if L ∼= ∑

q∈Q
f(q),

where |rang(f)| < +∞). Also the author showed that any low 1-quasidiscrete has a
computable copy.

Definition A linear ordering is called k-quasidiscrete, if any equivalence class either
is infinite or contains at most k elements, where x ∼ y iff there are only finite set of z
such that x ≤L z ≤L y or y ≤L z ≤L x.

Theorem Any low k-quasidiscrete linear ordering is a computable presentable or-
dering.
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