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Using a priority construction, we will prove a strong version of a theorem in Rosen-
stein [2]: every computably well-founded partial order has a computably well-founded
ω-c.e. linear extension. Note that Rosenstein’s theorem provides a construction of a
computably well-founded ∆0

2 linear extension under the same condition, using an or-
acle for ∅′. On the other hand, Rosenstein [2] gives a counterexample to show that
there is a computably well-founded computable partial order with no computably well-
founded computable linear extension. We will discuss the possibility of extending this
counterexample to that of a computably well-founded d-c.e. linear extension.
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