Lexicographic products of modal logics with linear frames

Philippe Balbiani

Institut de recherche en informatique de Toulouse

Products of relational structures

- Asynchronous products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right)$
$-\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ where
- $\mathrm{W}=\mathrm{W}_{1} \times \mathrm{W}_{2}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1} \mathrm{R}_{1} \mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{y}_{2}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2} \mathrm{R}_{2} \mathrm{y}_{2}$

Products of relational structures

- Asynchronous products of relational structures

Products of relational structures

- Asynchronous products of relational structures

$$
\begin{aligned}
& \mathrm{F}_{1}=\quad \circ \mathrm{R}_{1} \\
& \mathrm{x}_{1} \\
& \mathrm{~F}_{2}=\underset{\mathrm{x}_{2}}{ } \quad \bullet \xrightarrow{\mathrm{R}_{2}} \quad
\end{aligned}
$$

$\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$

$\left(y_{2}, x_{1}\right)$

Products of relational structures

- Asynchronous products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right), \mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

Products of relational structures

- Asynchronous products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right), \mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

Products of relational structures

- Asynchronous products of relational structures
- Let $\mathrm{F}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ be countable and such that
- $\forall x \forall y\left(\exists z\left(x S_{1} z \& z S_{2} y\right) \Rightarrow \exists z\left(x_{2} z \& z S_{1} y\right)\right)$
- $\forall x \forall y\left(\exists z\left(x S_{2} z \& z S_{1} y\right) \Rightarrow \exists z\left(x S_{1} z \& z S_{2} y\right)\right)$
- $\forall x \forall y\left(\exists z\left(z S_{1} x \& z S_{2} y\right) \Rightarrow \exists z\left(x S_{2} z \& y S_{1} z\right)\right)$
- Then there exists $\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right)$ and $\mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right)$ such that F is a p-morphic image of $\mathrm{F}_{1} \times \mathrm{F}_{2}$

Products of relational structures

- Lexicographic products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right)$
$-\mathrm{F}_{1}, \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ where
- $\mathrm{W}=\mathrm{W}_{1} \times \mathrm{W}_{2}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1} \mathrm{R}_{1} \mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{y}_{2}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{2} \mathrm{R}_{2} \mathrm{y}_{2}$

Products of relational structures

- Lexicographic products of relational structures

$\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$

$\left(\mathrm{x}_{2}, \mathrm{y}_{1}\right)$

Products of relational structures

- Lexicographic products of relational structures

$$
\begin{aligned}
& \mathrm{F}_{1}=\quad \circ \mathrm{R}_{1} \\
& \mathrm{x}_{1} \\
& \mathrm{~F}_{2}=\underset{\mathrm{x}_{2}}{ } \quad \stackrel{\mathrm{R}_{2}}{\longrightarrow} \\
& \\
& \\
& \mathrm{y}_{2}
\end{aligned}
$$

$\left(\mathrm{x}_{1}, \mathrm{y}_{2}\right)$

$\left(y_{2}, x_{1}\right)$

Products of relational structures

- Lexicographic products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right), \mathrm{F}_{1}>\mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

Products of relational structures

- Lexicographic products of relational structures
$-\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right), \mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right), \mathrm{F}_{1}>\mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$

Products of relational structures

- Lexicographic products of relational structures
- Let $\mathrm{F}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ be countable, reflexive and such that
- $\forall x \forall y\left(\exists z\left(x_{1} z \& S_{2} y\right) \Rightarrow x S_{2} y\right)$
- $\forall x \forall y\left(\exists z\left(x S_{2} z \& z S_{1} y\right) \Rightarrow x S_{2} y\right)$
- $\forall x \forall y\left(\exists z\left(z S_{1} x \& z S_{2} y\right) \Rightarrow x S_{2} y\right)$
- Then there exists $\mathrm{F}_{1}=\left(\mathrm{W}_{1}, \mathrm{R}_{1}\right)$ and $\mathrm{F}_{2}=\left(\mathrm{W}_{2}, \mathrm{R}_{2}\right)$ such that F is a p-morphic image of $\mathrm{F}_{1}>\mathrm{F}_{2}$

Products of modal logics

- Asynchronous products of modal logics
- Let L_{1} and L_{2} be Kripke-complete modal logics in [1] and [2] respectively
$-\mathrm{L}_{1} \times \mathrm{L}_{2}=\log \left\{\mathrm{F}_{1} \times \mathrm{F}_{2}: \mathrm{F}_{1} \mid=\mathrm{L}_{1}\right.$ and $\left.\mathrm{F}_{2} \mid=\mathrm{L}_{2}\right\}$
$-\mathrm{L}_{1} \times \mathrm{L}_{2}$ is the modal logic in [1] and [2] characterized by the class of all frames of the form $\mathrm{F}_{1} \times \mathrm{F}_{2}$ where $\mathrm{F}_{1} \mid=\mathrm{L}_{1}$ and $\mathrm{F}_{2} \mid=\mathrm{L}_{2}$

Products of modal logics

- Asynchronous products of modal logics
- Let L_{1} and L_{2} be Kripke-complete modal logics in [1] and [2] respectively
$-\mathrm{L}_{1}$ and L_{2} are \times-product matching iff
- $\mathrm{L}_{1} \times \mathrm{L}_{2}=\left(\mathrm{L}_{1} \otimes \mathrm{~L}_{2}\right) \oplus[2][1] p \rightarrow[1][2] \mathrm{p}$
$\oplus[1][2] p \rightarrow[2][1] p$
$\oplus<1>[2] \mathrm{p} \rightarrow[2]<1>\mathrm{p}$

Products of modal logics

- Asynchronous products of modal logics
- Let L_{1} and L_{2} be modal logics from the following list : K, D, T, K4, D4, S4, K45, KD45, S5
- Then L_{1} and L_{2} are \times-product matching

Products of modal logics

- Lexicographic products of modal logics
- Let L_{1} and L_{2} be Kripke-complete modal logics in [1] and [2] respectively
$-\mathrm{L}_{1}, \mathrm{~L}_{2}=\log \left\{\mathrm{F}_{1}, \mathrm{~F}_{2}: \mathrm{F}_{1} \mid=\mathrm{L}_{1}\right.$ and $\left.\mathrm{F}_{2} \mid=\mathrm{L}_{2}\right\}$
$-\mathrm{L}_{1}, \mathrm{~L}_{2}$ is the modal logic in [1] and [2] characterized by the class of all frames of the form $\mathrm{F}_{1} \downarrow \mathrm{~F}_{2}$ where $\mathrm{F}_{1} \mid=\mathrm{L}_{1}$ and $\mathrm{F}_{2} \mid=\mathrm{L}_{2}$

Products of modal logics

- Lexicographic products of modal logics
- Let L_{1} and L_{2} be Kripke-complete modal logics in [1] and [2] respectively
$-\mathrm{L}_{1}$ and L_{2} are -product matching iff
- $\mathrm{L}_{1} \rightarrow \mathrm{~L}_{2}=\left(\mathrm{L}_{1} \otimes \mathrm{~L}_{2}\right) \oplus[2] \mathrm{p} \rightarrow[1][2] \mathrm{p}$
$\oplus[2] \mathrm{p} \rightarrow[2][1] \mathrm{p}$
$\oplus<1>[2] \mathrm{p} \rightarrow[2] \mathrm{p}$

Products of modal logics

- Lexicographic products of modal logics
- Let L_{1} and L_{2} be modal logics from the following list : T, B, S4, S5
- Then L_{1} and L_{2} are -product matching
- Let L_{2} be a modal logic from the following list : K, KB, K4, KB4
- Then S 5 and L_{2} are - -product matching
- Let L_{1} be a canonical modal logic
- Then L_{1} and S 5 are -product matching

Modal logics with linear frames

- Asynchronous products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ where
- $\mathrm{W}=\mathrm{T} \times \mathrm{T}$
- $\left(x_{1}, x_{2}\right) S_{1}\left(y_{1}, y_{2}\right)$ iff $x_{1}<y_{1}$ and $x_{2}=y_{2}:<\left(x_{1}, x_{2}\right)$ is to the west of $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$)
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1}=\mathrm{y}_{1}$ and $\mathrm{x}_{2}<\mathrm{y}_{2}$: $<\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is to the south of $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$)

Modal logics with linear frames

- Asynchronous products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{1} be $S_{1} \cup I d \cup S_{1}{ }^{-1}$
$-\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Asynchronous products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{2} be $S_{2} \cup I d \cup S_{2}^{-1}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Asynchronous product $(\mathrm{Re},<) \times(\mathrm{Re},<)$
$-\mathrm{F}_{1}=(\mathrm{Re},<), \mathrm{F}_{2}=(\mathrm{Re},<)$
$-\mathrm{F}_{1} \times \mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- $\left(\mathrm{W}, \mathrm{S}_{1}\right)$ is a dense linear order without endpoints
- $\left(\mathrm{W}, \mathrm{S}_{2}\right)$ is a dense linear order without endpoints
- $\forall x \forall y\left(\exists z\left(x S_{1} z \& z S_{2} y\right) \Rightarrow \exists z\left(x_{2} z \& S_{1} y\right)\right)$
- $\forall x \forall y\left(\exists z\left(x S_{2} z \& z S_{1} y\right) \Rightarrow \exists z\left(x S_{1} z \& z S_{2} y\right)\right)$
- $\forall x \forall y\left(\exists z\left(\right.\right.$ zS $\left.\left._{1} x \& z S_{2} y\right) \Rightarrow \exists z\left(x S_{2} z \& y S_{1} z\right)\right)$
- $\forall x \forall y \exists z\left(x \equiv_{1} z \& z \equiv_{2} y\right)$
- $\forall x \forall y\left(x \equiv_{1} y \& x \equiv_{2} y \Rightarrow x=y\right)$

Modal logics with linear frames

- Lexicographic products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1} \downarrow \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$ where
- $\mathrm{W}=\mathrm{T} \times \mathrm{T}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{1}<\mathrm{y}_{1}$ and $\mathrm{x}_{2}=\mathrm{y}_{2}:<\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is to the west of $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$)
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ iff $\mathrm{x}_{2}<\mathrm{y}_{2}$: 《 $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ is to the south-west, the south or the south-east of $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$ »

Modal logics with linear frames

- Lexicographic products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1}, \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{1} be $S_{1} \cup I d \cup S_{1}{ }^{-1} \uparrow$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{1}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Lexicographic products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1}>\mathrm{F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{2} be $S_{2} \cup \equiv_{1} \cup S_{2}^{-1}$
$-\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Lexicographic products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1}, \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{2} be $S_{2} \cup \equiv_{1} \cup S_{2}^{-1}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Lexicographic products of linear frames
$-\mathrm{F}_{1}=(\mathrm{T},<), \mathrm{F}_{2}=(\mathrm{T},<)$
$-\mathrm{F}_{1}, \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- Let \equiv_{2} be $S_{2} \cup \equiv_{1} \cup S_{2}^{-1}$
- $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \mathrm{S}_{2}\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$

Modal logics with linear frames

- Lexicographic product $(\mathrm{Re},<)$ ($\mathrm{Re},<)$
$-\mathrm{F}_{1}=(\operatorname{Re},<), \mathrm{F}_{2}=(\operatorname{Re},<)$
$-\mathrm{F}_{1}, \mathrm{~F}_{2}=\left(\mathrm{W}, \mathrm{S}_{1}, \mathrm{~S}_{2}\right)$
- $\left(\mathrm{W}, \mathrm{S}_{1}\right)$ is a dense linear order without endpoints
- ($\mathrm{W}, \mathrm{S}_{2}$) is a dense linear (modulo \equiv_{1}) order without endpoints
- $\forall x \forall y\left(\exists z\left(x S_{1} z \& z S_{2} y\right) \Rightarrow x S_{2} y\right)$
- $\forall x \forall y\left(\exists z\left(x_{2} z \& z S_{1} y\right) \Rightarrow x S_{2} y\right)$
- $\forall x \forall y\left(\exists z\left(\mathrm{zS}_{1} \mathrm{x} \& \mathrm{zS}_{2} \mathrm{y}\right) \Rightarrow \mathrm{xS}_{2} \mathrm{y}\right)$
- $\forall x \forall y\left(x \equiv_{2} y\right)$

Modal logics with linear frames

- Asynchronous products of modal logics
$-\log \{(\operatorname{Re},<) \times(\operatorname{Re},<)\}$ is not r.e.
$-\log \{(\operatorname{Re}, \leq) \times(\operatorname{Re}, \leq)\}$ is not r.e.
- Lexicographic products of modal logics
$-\log \{(\operatorname{Re},<)(\operatorname{Re},<)\}$ is decidable (PSPACE-complete)
- Is $\log \{(\operatorname{Re}, \leq)$ ($\mathrm{Re}, \leq)\}$ decidable ?

Modal logics with linear frames

- Asynchronous products of modal logics
- K4.3 and K4.3 are not \times-product matching
- K4.3 and S4.3 are not \times-product matching
- S4.3 and K4.3 are not x-product matching
- Are S4.3 and S4.3 \times-product matching ?
- Lexicographic products of modal logics
- K4.3 and K4.3 are not -product matching
- Are K4.3 and S4.3 -product matching?
- S4.3 and K4.3 are not -product matching
- S4.3 and S4.3 are -product matching

Modal logics with linear frames

- Asynchronous products of modal logics
- K4. $3 \times \mathrm{K} 4.3$ is not decidable
- K4.3×S4.3 is not decidable
- S4.3×K4.3 is not decidable
$-\mathrm{S} 4.3 \times$ S4.3 is not decidable
- Lexicographic products of modal logics
- Is K4.3 $\stackrel{\text { K4.3 decidable ? }}{ }$
- Is K4.3 $\stackrel{\text { S } 4.3 ~ d e c i d a b l e ~ ? ~}{\text { ? }}$
- Is S4.3 K4.3 decidable ?
$-\mathrm{S} 4.3-\mathrm{S} 4.3$ is decidable (PSPACE-complete)

Open problems

- Is $\log \{(\mathrm{Re}, \leq) \bullet(\mathrm{Re}, \leq)\}$ decidable ?
- Are K4.3 and S4.3 -product matching ?
- Is K4.3 K4.3 decidable ?
- Is K4.3 - S4.3 decidable?
- Is $\mathbf{S} 4.3$ K K 4.3 decidable?
- Equivalent of Bull's theorem and Fine's theorem
- Does every normal modal logic extending S4.3 $\stackrel{\text { S4.3 possess the finite model }}{ }$ property?
- Is every normal modal logic extending S4.3 \downarrow S4.3 finitely axiomatizable?

