Lexicographic products of modal logics with linear frames

Philippe Balbiani

Institut de recherche en informatique de Toulouse

• Asynchronous products of relational structures

$$-F_1 = (W_1, R_1), F_2 = (W_2, R_2)$$

- $-F_1 \times F_2 = (W, S_1, S_2)$ where
 - $W = W_1 \times W_2$
 - $(x_1, x_2) S_1 (y_1, y_2)$ iff $x_1 R_1 y_1$ and $x_2 = y_2$
 - $(x_1,x_2) S_2 (y_1,y_2)$ iff $x_1 = y_1$ and $x_2 R_2 y_2$

• Asynchronous products of relational structures

• Asynchronous products of relational structures

$$F_{1} = \circ R_{1} \qquad (x_{1}, x_{2}) \qquad (x_{2}, x_{1})$$

$$F_{1} = \circ R_{1} \qquad F_{1} \times F_{2} = S_{2} \qquad F_{2} \times F_{1} = S_{2} \qquad F_{2} \qquad F_{2} \times F_{2} \qquad F_{2}$$

• Asynchronous products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \times F_2 = (W, S_1, S_2)$

• Asynchronous products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \times F_2 = (W, S_1, S_2)$

- Asynchronous products of relational structures - Let $F = (W, S_1, S_2)$ be countable and such that
 - $\forall x \forall y (\exists z (xS_1z \& zS_2y) \Rightarrow \exists z (xS_2z \& zS_1y))$
 - $\forall x \forall y (\exists z (xS_2z \& zS_1y) \Rightarrow \exists z (xS_1z \& zS_2y))$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow \exists z (xS_2 z \& yS_1 z))$
 - Then there exists $F_1 = (W_1, R_1)$ and $F_2 = (W_2, R_2)$ such that F is a p-morphic image of $F_1 \times F_2$

• Lexicographic products of relational structures

$$-F_1 = (W_1, R_1), F_2 = (W_2, R_2)$$

$$-F_1 ► F_2 = (W, S_1, S_2)$$
 where

•
$$W = W_1 \times W_2$$

- $(x_1, x_2) S_1 (y_1, y_2)$ iff $x_1 R_1 y_1$ and $x_2 = y_2$
- $(x_1,x_2) S_2 (y_1,y_2) \text{ iff } x_2 R_2 y_2$

• Lexicographic products of relational structures

• Lexicographic products of relational structures

$$F_{1} = \circ R_{1} \qquad (x_{1}, x_{2}) \qquad (x_{2}, x_{1})$$

$$F_{1} \bullet F_{2} = \circ S_{1} \qquad F_{2} \bullet F_{1} = S_{1} \qquad S_{1} \qquad S_{1} = S_{1} \qquad S_{1}$$

• Lexicographic products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \triangleright F_2 = (W, S_1, S_2)$

• Lexicographic products of relational structures $-F_1 = (W_1, R_1), F_2 = (W_2, R_2), F_1 \triangleright F_2 = (W, S_1, S_2)$

- Lexicographic products of relational structures - Let $F = (W, S_1, S_2)$ be countable, reflexive and such that
 - $\forall x \forall y (\exists z (xS_1z \& zS_2y) \Rightarrow xS_2y)$
 - $\forall x \forall y (\exists z (xS_2z \& zS_1y) \Rightarrow xS_2y)$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow xS_2 y)$
 - Then there exists $F_1 = (W_1, R_1)$ and $F_2 = (W_2, R_2)$ such that F is a p-morphic image of $F_1 \triangleright F_2$

- Asynchronous products of modal logics
 - Let L₁ and L₂ be Kripke-complete modal logics in [1] and [2] respectively
 - $-L_1 \times L_2 = Log \{ F_1 \times F_2 : F_1 \mid = L_1 \text{ and } F_2 \mid = L_2 \}$
 - $L_1 \times L_2$ is the modal logic in [1] and [2] characterized by the class of all frames of the form $F_1 \times F_2$ where $F_1 \mid = L_1$ and $F_2 \mid = L_2$

- Asynchronous products of modal logics
 - Let L₁ and L₂ be Kripke-complete modal logics in [1] and [2] respectively
 - $-L_1$ and L_2 are x-product matching iff
 - $L_1 \times L_2 = (L_1 \otimes L_2) \oplus [2] [1]p \rightarrow [1][2]p$ $\oplus [1][2]p \rightarrow [2][1]p$ $\oplus <1>[2]p \rightarrow [2]<1>p$

- Asynchronous products of modal logics
 - Let L₁ and L₂ be modal logics from the following list : K,
 D, T, K4, D4, S4, K45, KD45, S5
 - Then L_1 and L_2 are x-product matching

- Lexicographic products of modal logics
 - Let L₁ and L₂ be Kripke-complete modal logics in [1] and [2] respectively
 - $-L_1 \triangleright L_2 = Log \{ F_1 \triangleright F_2 : F_1 \mid = L_1 \text{ and } F_2 \mid = L_2 \}$
 - $L_1 \triangleright L_2$ is the modal logic in [1] and [2] characterized by the class of all frames of the form $F_1 \triangleright F_2$ where $F_1 \mid = L_1$ and $F_2 \mid = L_2$

- Lexicographic products of modal logics
 - Let L₁ and L₂ be Kripke-complete modal logics in [1] and [2] respectively
 - $-L_1$ and L_2 are \blacktriangleright -product matching iff

•
$$L_1
in L_2 = (L_1 \otimes L_2) \oplus [2]p \rightarrow [1][2]p$$

 $\oplus [2]p \rightarrow [2][1]p$
 $\oplus <1>[2]p \rightarrow [2]p$

- Lexicographic products of modal logics
 - Let L_1 and L_2 be modal logics from the following list : T, B, S4, S5
 - Then L_1 and L_2 are \blacktriangleright -product matching
 - Let L₂ be a modal logic from the following list : K, KB, K4, KB4
 - Then S5 and L_2 are \blacktriangleright -product matching
 - Let L_1 be a canonical modal logic
 - Then L_1 and S5 are \blacktriangleright -product matching

• Asynchronous products of linear frames

$$-F_1 = (T, <), F_2 = (T, <)$$

$$-F_1 \times F_2 = (W, S_1, S_2)$$
 where

- W = T×T
- $(x_1,x_2) S_1 (y_1,y_2)$ iff $x_1 < y_1$ and $x_2 = y_2 : \ll (x_1,x_2)$ is to the west of $(y_1,y_2) \gg$
- $(x_1,x_2) S_2 (y_1,y_2)$ iff $x_1 = y_1$ and $x_2 < y_2 \le (x_1,x_2)$ is to the south of $(y_1,y_2) \gg$

• Asynchronous products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \times F_2 = (W, S_1, S_2)$ -Let \equiv_1 be $S_1 \cup Id \cup S_1^{-1}$ $-(x_1,x_2) S_1(y_1,y_2)$ (x_1, x_2) (y_1, y_2)

• Asynchronous products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \times F_2 = (W, S_1, S_2)$ $-\text{Let} =_{2} \text{be } S_{2} \cup \text{Id} \cup S_{2}^{-1}$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

- Asynchronous product (Re,<)×(Re,<)
 - $F_1 = (Re, <), F_2 = (Re, <)$
 - $F_1 \times F_2 = (W, S_1, S_2)$
 - (W,S₁) is a dense linear order without endpoints
 - (W,S_2) is a dense linear order without endpoints
 - $\forall x \forall y (\exists z (xS_1z \& zS_2y) \Rightarrow \exists z (xS_2z \& zS_1y))$
 - $\forall x \forall y (\exists z (xS_2 z \& zS_1 y) \Rightarrow \exists z (xS_1 z \& zS_2 y))$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow \exists z (xS_2 z \& yS_1 z))$
 - $\forall x \forall y \exists z (x \equiv_1 z \& z \equiv_2 y)$
 - $\forall x \forall y (x \equiv_1 y \& x \equiv_2 y \Rightarrow x = y)$

• Lexicographic products of linear frames

$$-F_1 = (T,<), F_2 = (T,<)$$

$$-F_1
ightharpoons F_2 = (W, S_1, S_2)$$
 where

- W = T×T
- $(x_1,x_2) S_1 (y_1,y_2)$ iff $x_1 < y_1$ and $x_2 = y_2 : \ll (x_1,x_2)$ is to the west of $(y_1,y_2) \gg$
- $(x_1,x_2) S_2(y_1,y_2)$ iff $x_2 < y_2 < (x_1,x_2)$ is to the south-west, the south or the south-east of $(y_1,y_2) \gg$

• Lexicographic products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ -Let \equiv_1 be $S_1 \cup Id \cup S_1^{-1}$ $-(x_1,x_2) S_1(y_1,y_2)$ (x_1, x_2) (y_1, y_2)

• Lexicographic products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-\text{Let} \equiv_2 \text{be } S_2 \cup \equiv_1 \cup S_2^{-1}$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

• Lexicographic products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-\text{Let} \equiv_2 \text{be } S_2 \cup \equiv_1 \cup S_2^{-1}$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

• Lexicographic products of linear frames $-F_1 = (T, <), F_2 = (T, <)$ $-F_1 \triangleright F_2 = (W, S_1, S_2)$ $-\text{Let} \equiv_2 \text{be } S_2 \cup \equiv_1 \cup S_2^{-1}$ $-(x_1,x_2) S_2(y_1,y_2)$ (y_1, y_2) (x_1, x_2)

- Lexicographic product (Re,<) ▶ (Re,<)
 - $F_1 = (Re, <), F_2 = (Re, <)$
 - $F_1 \triangleright F_2 = (W, S_1, S_2)$
 - (W,S_1) is a dense linear order without endpoints
 - (W,S₂) is a dense linear (modulo \equiv_1) order without endpoints
 - $\forall x \forall y (\exists z (xS_1 z \& zS_2 y) \Rightarrow xS_2 y)$
 - $\forall x \forall y (\exists z (xS_2 z \& zS_1 y) \Rightarrow xS_2 y)$
 - $\forall x \forall y (\exists z (zS_1 x \& zS_2 y) \Rightarrow xS_2 y)$
 - $\forall x \forall y (x \equiv_2 y)$

- Asynchronous products of modal logics
 - Log { (Re,<)×(Re,<) } is not r.e.
 - Log { (Re, \leq)×(Re, \leq) } is not r.e.
- Lexicographic products of modal logics
 - Log { (Re,<) ▶ (Re,<) } is decidable (PSPACE-complete)</p>
 - Is Log { (Re, \leq) \blacktriangleright (Re, \leq) } decidable ?

- Asynchronous products of modal logics
 - K4.3 and K4.3 are not ×-product matching
 - K4.3 and S4.3 are not ×-product matching
 - S4.3 and K4.3 are not ×-product matching
 - Are S4.3 and S4.3 ×-product matching ?
- Lexicographic products of modal logics
 - K4.3 and K4.3 are not ▶ -product matching
 - Are K4.3 and S4.3 ▶ -product matching ?
 - S4.3 and K4.3 are not ▶ -product matching
 - S4.3 and S4.3 are ▶ -product matching

- Asynchronous products of modal logics
 - K4.3×K4.3 is not decidable
 - K4.3×S4.3 is not decidable
 - S4.3×K4.3 is not decidable
 - S4.3×S4.3 is not decidable
- Lexicographic products of modal logics
 - Is K4.3 \blacktriangleright K4.3 decidable ?
 - Is K4.3 \blacktriangleright S4.3 decidable ?
 - Is S4.3 ▶ K4.3 decidable ?
 - S4.3 ▶ S4.3 is decidable (PSPACE-complete)

Open problems

- Is Log { (Re, \leq) (Re, \leq) } decidable ?
- Are K4.3 and S4.3 ▶ -product matching ?
- Is K4.3 ▶ K4.3 decidable ?
- Is K4.3 S4.3 decidable ?
- Is S4.3 K4.3 decidable ?
- Equivalent of Bull's theorem and Fine's theorem
 - Does every normal modal logic extending S4.3 ▶ S4.3 possess the finite model property ?
 - Is every normal modal logic extending S4.3 ▶ S4.3 finitely axiomatizable ?