Homotopy types of definable groups in o-minimal structures

Elías Baro González

Logic Colloquium 2009

Universidad Autónoma de Madrid July 31th, 2009

■ We work over a sufficiently saturated o-minimal expansion *R* of a real closed field *R*.

- We work over a sufficiently saturated o-minimal expansion *R* of a real closed field *R*.
- The positively solution to Pillay's conjecture provides a canonical functor
 - $$\begin{split} \mathbb{L}: \{ \text{d-compact definable groups} \} & \to & \{ \text{Compact Real Lie groups} \} \\ G & \mapsto & \mathbb{L}(G) := G/G^{00}. \end{split}$$

- We work over a sufficiently saturated o-minimal expansion *R* of a real closed field *R*.
- The positively solution to Pillay's conjecture provides a canonical functor
 - $\begin{array}{rcl} \mathbb{L}: \{ \mathsf{d}\text{-compact definable groups} \} & \to & \{ \mathsf{Compact Real Lie groups} \} \\ & \mathcal{G} & \mapsto & \mathbb{L}(\mathcal{G}) := \mathcal{G}/\mathcal{G}^{00}. \end{array}$
- Our aim is to study the homotopic properties of this functor.

- We work over a sufficiently saturated o-minimal expansion *R* of a real closed field *R*.
- The positively solution to Pillay's conjecture provides a canonical functor
 - $\begin{array}{rcl} \mathbb{L}: \{ \text{d-compact definable groups} \} & \to & \{ \text{Compact Real Lie groups} \} \\ & G & \mapsto & \mathbb{L}(G) := G/G^{00}. \end{array}$
- Our aim is to study the homotopic properties of this functor.

Purpose

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.

Background: homotopy comparison theorems

Let X and Y be semialgebraic sets over R defined without parameters.

Theorem

B.-Otero'08

Every definable map $f : X \to Y$ is definably homotopic to a semialgebraic one (without parameters). Moreover, if two semialgebraic maps (without parameters) are definably homotopic then they are semialgebraically homotopic (without parameters).

Background: homotopy comparison theorems

Let X and Y be semialgebraic sets over R defined without parameters.

Theorem

B.-Otero'08

Every definable map $f : X \to Y$ is definably homotopic to a semialgebraic one (without parameters). Moreover, if two semialgebraic maps (without parameters) are definably homotopic then they are semialgebraically homotopic (without parameters).

Theorem

Delfs-Knebusch'85

If $R = \mathbb{R}$, every continuous map $f : X \to Y$ is homotopic to a semialgebraic one defined without parameters. Moreover, if two semialgebraic maps (without parameters) are homotopic then they are semialgebraically homotopic (without parameters).

Applications

Theorem

B.-Otero'08

Let X be a semialgebraic set defined without parameters. Then $\pi_n(X)^{\mathcal{R}} \cong \pi_n(X(\mathbb{R}))$ for all $n \ge 1$.

o-minimal Whitehead theorem

B.-Otero'08

Let X and Y be definable sets and let $f : X \to Y$ be a definable map such that $f_* : \pi_n(X)^{\mathcal{R}} \to \pi_n(Y)^{\mathcal{R}}$ is an isomorphism for all $n \ge 0$. Then f is a definable homotopy equivalence.

Theorem

Berarducci-Mamino-Otero'09

Let G be a definably compact definable group. Then

$$\pi_n(G)^{\mathcal{R}} \cong \pi_n(\mathbb{L}(G))$$

for all $n \ge 1$.

Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.

Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G and H are definable homotopy equivalent if and only if $\mathbb{L}(G)$ and $\mathbb{L}(H)$ are homotopy equivalent.

For example, if $G \sim_{def} H$ then $G \sim_{sa} H$ (without parameters). Hence $G(\mathbb{R}) \sim_{sa} H(\mathbb{R})$. Finally,

 $\mathbb{L}(G) \sim G(\mathbb{R}) \sim_{sa} H(\mathbb{R}) \sim \mathbb{L}(H).$

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

Theorem

Let G be a d-compact, d-connected definable group. We assume that its underlying set is a semialgebraic set defined without parameters. Then $G(\mathbb{R})$ is homotopy equivalent to $\mathbb{L}(G)$.

In two special cases the theorem was already proved:

- If G is abelian (by Berarducci-Mamino-Otero'08)
- If *G* is semisimple (by Edmundo-Jones-Peatfield'09)

General case

We fix G a d-compact, d-connected definable group.

General case

We fix G a d-compact, d-connected definable group.

To prove the general case we need a recent structural result...

Theorem

Hrushovski, Peterzil, Pillay'09

G' := [G, G] is a definably connected, semisimple definable subgroup of G. Moreover,

$$p: Z(G)^0 \times G' \to G: (x, y) \mapsto xy,$$

is a surjective homomorphism with finite kernel.

...and a classical result concerning compact Lie groups.

Theorem

A.Borel'61

Let *H* be compact, connected Real Lie group. Then *H* is homeomorphic to $Z(H)^0 \times H'$.

Proposition

G is definable homotopy equivalent to $\mathbb{T}_R^n \times G'$, where $n = \dim(Z(G)^0)$.

Proposition

G is definable homotopy equivalent to $\mathbb{T}_R^n \times G'$, where $n = \dim(Z(G)^0)$.

This is enough because ...

$$\mathbb{L}(G) \simeq \mathbb{L}(Z(G)^0) \times \mathbb{L}(G') \sim \mathbb{T}_{\mathbb{R}}^n \times G'(\mathbb{R}) \sim G(\mathbb{R})$$

Proof of the proposition

Since
$$\pi_1(G)^{\mathcal{R}} \cong \pi_1(\mathbb{T}^n_{\mathbb{R}}) \times \pi_1(\mathbb{L}(G)')$$
 we have that
 $\pi_1(G)^{\mathcal{R}}/\mathsf{Tor}(\pi_1(G)^{\mathcal{R}}) \cong \mathbb{Z}^n.$

Proof of the proposition

Since
$$\pi_1(G)^{\mathcal{R}} \cong \pi_1(\mathbb{T}^n_{\mathbb{R}}) \times \pi_1(\mathbb{L}(G)')$$
 we have that
$$\pi_1(G)^{\mathcal{R}}/\mathsf{Tor}(\pi_1(G)^{\mathcal{R}}) \cong \mathbb{Z}^n.$$

Take $\gamma_1, \ldots, \gamma_n : I \to G$ definable curves such that

$$[\gamma_1] + \operatorname{Tor}(\pi_1(G)), \ldots, [\gamma_n] + \operatorname{Tor}(\pi_1(G)),$$

freely generate the group $\pi_1(G)/\operatorname{Tor}(\pi_1(G))$.

Proof of the proposition

Since
$$\pi_1(G)^{\mathcal{R}} \cong \pi_1(\mathbb{T}^n_{\mathbb{R}}) \times \pi_1(\mathbb{L}(G)')$$
 we have that
 $\pi_1(G)^{\mathcal{R}}/\mathsf{Tor}(\pi_1(G)^{\mathcal{R}}) \cong \mathbb{Z}^n.$

Take $\gamma_1, \ldots, \gamma_n : I \to G$ definable curves such that

$$[\gamma_1] + \operatorname{Tor}(\pi_1(G)), \ldots, [\gamma_n] + \operatorname{Tor}(\pi_1(G)),$$

freely generate the group $\pi_1(G)/\text{Tor}(\pi_1(G))$. Consider the definable map,

$$f: \mathbb{T}_R^n \times G' \to G: (t_1, \ldots, t_n, g) \mapsto \gamma_1(t_1) \cdots \gamma_n(t_n)g.$$

f is a definable homotopy equivalence

- E. Baro, On the o-minimal LS-category, e-print, arXiv:0905.1391, 2009.
- E. Baro and M. Otero, On o-minimal homotopy groups, Quart. J. Math.,(2009) in press (doi:10.1093/qmath/hap011).
- A. Berarducci and M. Mamino, Equivariant homotopy of definable groups, e-print, arXiv:0905.1069, 2009.
 - A. Borel, Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes, Tohoku Math. J. (2) 13 (1961) 216–240.
- E. Hrushovski, Y. Peterzil and A. Pillay, On central extensions and definably compact groups in o-minimal structures, e-print, arXiv:0811.0089, 2008.