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Introduction

We work over a sufficiently saturated o-minimal expansion R
of a real closed field R.

The positively solution to Pillay’s conjecture provides a
canonical functor

L : {d-compact definable groups} → {Compact Real Lie groups}
G 7→ L(G ) := G/G 00.

Our aim is to study the homotopic properties of this
functor.

Purpose

Let G and H be d-compact, d-connected definable groups. Then G
and H are definable homotopy equivalent if and only if L(G ) and
L(H) are homotopy equivalent.
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Background: homotopy comparison theorems

Let X and Y be semialgebraic sets over R defined without
parameters.

Theorem B.-Otero’08

Every definable map f : X → Y is definably homotopic to a
semialgebraic one (without parameters). Moreover, if two
semialgebraic maps (without parameters) are definably homotopic
then they are semialgebraically homotopic (without parameters).

Theorem Delfs-Knebusch’85

If R = R, every continuous map f : X → Y is homotopic to a
semialgebraic one defined without parameters. Moreover, if two
semialgebraic maps (without parameters) are homotopic then they
are semialgebraically homotopic (without parameters).
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Applications

Theorem B.-Otero’08

Let X be a semialgebraic set defined without parameters. Then
πn(X )R ∼= πn(X (R)) for all n ≥ 1.

o-minimal Whitehead theorem B.-Otero’08

Let X and Y be definable sets and let f : X → Y be a definable
map such that f∗ : πn(X )R → πn(Y )R is an isomorphism for all
n ≥ 0. Then f is a definable homotopy equivalence.

Theorem Berarducci-Mamino-Otero’09

Let G be a definably compact definable group. Then

πn(G )R ∼= πn(L(G ))

for all n ≥ 1.



Main results

The latter suggest the following.

Theorem

Let G be a d-compact, d-connected definable group. We assume
that its underlying set is a semialgebraic set defined without
parameters. Then G (R) is homotopy equivalent to L(G ).

In turn, this implies our purpose.

Corollary

Let G and H be d-compact, d-connected definable groups. Then G
and H are definable homotopy equivalent if and only if L(G ) and
L(H) are homotopy equivalent.

For example, if G ∼def H then G ∼sa H (without parameters).
Hence G (R) ∼sa H(R). Finally,

L(G ) ∼ G (R) ∼sa H(R) ∼ L(H).

.
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Main result

Theorem

Let G be a d-compact, d-connected definable group. We assume
that its underlying set is a semialgebraic set defined without
parameters. Then G (R) is homotopy equivalent to L(G ).

In two special cases the theorem was already proved:

If G is abelian (by Berarducci-Mamino-Otero’08)

If G is semisimple (by Edmundo-Jones-Peatfield’09)
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General case

We fix G a d-compact, d-connected definable group.

To prove the general case we need a recent structural result...

Theorem Hrushovski, Peterzil, Pillay’09

G ′ := [G ,G ] is a definably connected, semisimple definable
subgroup of G . Moreover,

p : Z (G )0 × G ′ → G : (x , y) 7→ xy ,

is a surjective homomorphism with finite kernel.

...and a classical result concerning compact Lie groups.

Theorem A.Borel’61

Let H be compact, connected Real Lie group. Then H is
homeomorphic to Z (H)0 × H ′.
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General case

Proposition

G is definable homotopy equivalent to Tn
R × G ′, where

n = dim(Z (G )0).

This is enough because...

L(G ) ' L(Z (G )0)× L(G ′) ∼ Tn
R × G ′(R) ∼ G (R)
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Proof of the proposition

Since π1(G )R ∼= π1(Tn
R)× π1(L(G )′) we have that

π1(G )R/Tor(π1(G )R) ∼= Zn.

Take γ1, . . . , γn : I → G definable curves such that

[γ1] + Tor(π1(G )), . . . , [γn] + Tor(π1(G )),

freely generate the group π1(G )/Tor(π1(G )).
Consider the definable map,

f : Tn
R × G ′ → G : (t1, . . . , tn, g) 7→ γ1(t1) · · · γn(tn)g .

f is a definable homotopy equivalence
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