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Approximating C and K (1).

Plain Kolmogorov complexity C and prefix-free Kolmogorov
complexity K are both non-computable functions.

However, they are right-computable i.e. there exists a computable
function (x, s) 7→ Cs(x) such that for all x

• the sequence s 7→ Cs(x) is nonincreasing

• lims Cs(x) = C(x)

and similarly there exists a function (x, s) 7→ Ks(x) for K.
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Approximating C and K (2).

This gives us an easy way to construct computable upper bounds of
C or K: take a computable function t : 2<ω → N and set

f(x) = Ct(x) (x)

Then f is a computable upper bound of C.
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Approximating C and K (3).

How good are such approximations?

In general, very bad!!

Proposition
Let f be a computable upper bound of K and Ψ any computable
function. There exist infinitely many strings x s.t.

f(x) > Ψ(K(x))
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Upper bounds suffice (1).

Despite this negative result, it turns out that in the theory of
randomness for infinite sequences, computable upper bounds of
Kolmogorov complexity do a good job.

Let us take for example the celebrated:

Theorem (Levin-Schnorr)
Let A ∈ 2ω. Then A is Martin-Löf random if and only if

K(A � n) ≥ n − O(1)
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Upper bounds suffice (2).

Theorem (B., Merkle)
Let A ∈ 2ω. Then A is Martin-Löf random if and only if for every
computable upper bound f of K we have:

f(A � n) ≥ n − O(1)

Theorem (B., Merkle)
There exists a single computable upper bound F of K such that for all
A ∈ 2ω, A is Martin-Löf random if and only if

F(A � n) ≥ n − O(1)
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Upper bounds suffice (3).

Theorem (Gács / Miller, Yu)
Let A ∈ 2ω. Then A is Martin-Löf random if and only if

C(A � n) ≥ n − K(n) − O(1)
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Upper bounds suffice (3).

Theorem (Gács / Miller, Yu)
Let A ∈ 2ω. Then A is Martin-Löf random if and only if

C(A � n) ≥ n − K(n) − O(1)

Theorem (Miller, Yu)
There exists a single computable upper bound F of K such that the
following holds. For every A ∈ 2ω, A is Martin-Löf random if and
only if

C(A � n) ≥ n − F(n) − O(1)
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Approximating well i.o. (1).

We have seen that no computable upper bound of C or K is always
accurate. Can we hope for infinitely often accurate?

For C, this is easy. Most strings x satisfy C(x) = |x| + O(1), so take
g(x) = |x| + c for an appropriate c, so that C ≤ g and
g(x) ≤ C(x) + O(1) for infinitely many x.

What about K? Can we find a computable upper bound g of K such
that g(x) ≤ K(x) + O(1) for infinitely many x?

Harder: a string x has maximal complexity |x| + K(|x|), so it seems
that we already need a good approximation of K... a vicious circle!!
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Approximating well i.o. (2).
Nonetheless,

Theorem (Solovay)
There exists a computable upper bound g of K such that
g(x) ≤ K(x) + O(1) for infinitely many x.

Proof.
Given x such that K(x) = k, let s be the first integer such that
Ks(x) = k. Then

K
(
⟨x, k, s⟩

)
= K(x) + O(1)

and ⟨x, k, s⟩ gives enough information to perform the
approximation.
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Solovay functions.

Definition
A Solovay function is a computable function f such that

• K ≤ f + O(1)

• for infinitely many strings x, f(x) ≤ K(x) + O(1)
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A useful criterion.

The condition K ≤ f + O(1) in the definition is equivalent to∑
n 2−f(n) < +∞ (identifying N and 2<ω).

Theorem
Let f : N → N be a computable function. Then f is a Solovay
function if and only if the sum∑

n

2−f(n)

is finite and is a Martin-Löf random (left-c.e.) real.
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A useful criterion (2).

Corollary
If α and β are two left-c.e reals, then α + β is random if and only
either α or β is random.

Corollary (Miller)
For any A ∈ 2ω, the following are equivalent
(i) A is low for Ω (i.e., Ω is A-random)
(ii) A is weakly low for K ( i.e., K(x) = KA(x) + O(1) i.o.)
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Solovay functions and randomness.
Solovay functions naturally come up in Martin-Löf randomness:

Theorem
Let F be a computable upper bound of K such that for all A

A is Martin-Löf random ⇔ F(A � n) ≥ n − O(1)

then F must be a Solovay function. (Q: is it sufficient?)
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Solovay functions and triviality.

Recall that A is K-trivial if K(A � n) ≤ K(n) + O(1).

Theorem
There exists a single computable upper bound F of K such that for
all A:

A is K-trivial ⇔ K(A � n) ≤ F(n) + O(1)

In the proof, F is a Solovay function (the “original” one).

But:

• does any Solovay function do the job?

• does F really need to be a Solovay function?
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Thank you


