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Eventually different forcing and inaccessible
cardinals

Benedikt Löwe
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Characterisation of regularity properties in terms
of generic reals (1).

Theorem (Solovay). LM(Σ1
2) if and only if for every x , the

set of random reals over L[x ] is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). LM(∆1
2) if and only if for every

x , there is a random real over L[x ].

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is
not a member of any measure zero Borel set with a Borel
code in M.

Corollary. If ω1 is inaccessible by reals, then LM(Σ1
2).

Corollary. In the ω1-iteration of random forcing, LM(∆1
2)

holds.



Eventually
different forcing
and inaccessible

cardinals

Benedikt Löwe
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Generalisations.

Even more generally, a forcing notion P defines an ideal IP,
a corresponding notion of measurability, and a notion of
genericity. We write MeasP(Γ) for “all sets in Γ are
P-measurable”.

A false hope:

I MeasP(Σ1
2) if and only if for every x , the set of

P-generics over L[x ] is co-IP. (“Solovay Theorem”)

I MeasP(∆1
2) if and only if for every x , there is a

P-generic over L[x ]. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a
refinement is necessary.
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Generalisations.

Even more generally, a forcing notion P defines an ideal IP,
a corresponding notion of measurability, and a notion of
genericity. We write MeasP(Γ) for “all sets in Γ are
P-measurable”.

A false hope:

I MeasP(Σ1
2) if and only if for every x , the set of

P-generics over L[x ] is co-IP. (“Solovay Theorem”)

I MeasP(∆1
2) if and only if for every x , there is a

P-generic over L[x ]. (“Judah-Shelah Theorem”)

It will turn out that these are not true in general, and a
refinement is necessary.



Eventually
different forcing
and inaccessible

cardinals

Benedikt Löwe
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A concrete example: Hechler forcing

The conditions of Hechler forcing define a topology called the
dominating topology. We call a set D-measurable if it has the
Baire property in the dominating topology and let the ideal ID be
the set of all sets meager in the dominating topology. Again, a
real is Hechler over M if it is not an element of any Borel set
meager in the dominating topology and coded in M.

Theorem (Brendle-L. 1998). The following are equivalent:

I MeasD(Σ1
2),

I for every x , the set of Hechler reals over L[x ] is co-meager in
the dominating topology,

I ω1 is inaccessible by reals.

Theorem (Brendle-L. 1998). The following are equivalent:

I MeasD(∆1
2),

I for every x , there is a Hechler real over L[x ],

I BP(Σ1
2).
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A diagram of implications

Σ1
2(D)

#+PPPPPPPP

PPPPPPPP

z� ||
||

||
||

||
||

||
|

||
||

||
||

||
||

||
|

Σ1
2(B) = ∆1

2(A)

!)KKKKKK

KKKKKK

��

s{ nnnnnnnn
nnnnnnnn

z� }}
}}

}}
}}

}}
}}

}}

}}
}}

}}
}}

}}
}}

}}

Σ1
2(R) = ∆1

2(R)

��

� 

Σ1
2(C) = ∆1

2(D)

��rz nnnnnnnn
nnnnnnnn

∆1
2(B)

��

hp

Σ1
2(L) = ∆1

2(L)

��

#+

∆1
2(C)

��
Σ1

2(V)

��rz nnnnnnnnn

nnnnnnnnn ev. diff.

dl

Σ1
2(M) = ∆1

2(M)

��

∆1
2(V)

rz nnnnnnnnn

nnnnnnnnn

Σ1
2(S) = ∆1

2(S)



Eventually
different forcing
and inaccessible

cardinals

Benedikt Löwe

Eventually different forcing (1).

Eventually different forcing E consists of pairs 〈s,F 〉, where
s ∈ ω<ω and F is a finite set of reals

with

〈s,F 〉 ≤ 〈t,G 〉 iff t ⊆ s, G ⊆ F , and

∀i ∈ dom(s\t) ∀g ∈ G (s(i) 6= g(i)).

Eventually different forcing is a c.c.c. forcing that generates
the eventually different topology refining the standard
topology on Baire space.

Proposition ( Labȩdzki 1997). The meager sets in the
eventually different topology form an ideal IE which has a
basis of Borel sets.

Theorem ( Labȩdzki 1997). A real x is E-generic over M if
and only if it is E-quasigeneric over M.
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Proposition ( Labȩdzki 1997). The meager sets in the
eventually different topology form an ideal IE which has a
basis of Borel sets.
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Eventually different forcing (2).

Let 〈fα;α < ω1〉 be a family of eventually different functions.
Let

Eα := {x ∈ ωω;∃∞k ∈ ω(x(k) = fα(k))}.

These sets are nowhere dense in the eventually different
topology.

Theorem (Brendle). If G is meager in the eventually
different topology and 〈fα;α < ω1〉 a family of eventually
different functions then the set {α; Eα ⊆ G} is countable.

Corollary ( Labȩdzki). The additivity of ID is ℵ1.
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Ikegami’s abstract Solovay and Judah-Shelah
theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is
P-quasigeneric over M if if for all Borel codes c ∈ M such that
Bc ∈ I∗P , we have that r /∈ Bc . Here,

I∗P := {X ; ∀T ∈ P∃S ∈ P(S ≤ T ∧ [S ] ∩ X ∈ IP)}.

For random, Cohen and Hechler reals, being generic is equivalent
to being quasigeneric.

Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a
proper and strongly arboreal forcing notion such that {c ; c is a
Borel code and Bc ∈ I∗P} is Σ1

2, then the following are equivalent:

1. Σ1
3-P-absoluteness,

2. every ∆1
2 set is P-measurable, and

3. for every real x and every T ∈ P, there is a I∗P -quasigeneric
real in [T ] over L[x ].
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Ikegami’s abstract Solovay and Judah-Shelah
theorems (2).

Abstract Solovay Theorem (Ikegami 2007). If P is a
proper and strongly arboreal forcing notion such that {c ; c
is a Borel code and Bc ∈ I∗P} is Σ1

2 and IP is Borel
generated, then the following are equivalent:

1. every Σ1
2 set is P-measurable, and

2. for every real x , the set {y ; y is not I∗P-quasigeneric
over L[x ]} belongs to I∗P.
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A Solovay theorem for E.

Abstract Solovay Theorem (Ikegami 2007). If P is a proper and strongly
arboreal forcing notion such that {c ; c is a Borel code and Bc ∈ I∗P} is Σ1

2
and IP is Borel generated, then the following are equivalent:

1. every Σ1
2 set is P-measurable, and

2. for every real x , the set {y ; y is not I∗P -quasigeneric over L[x]} belongs
to I∗P .

Theorem. The following are equivalent:

1. MeasE(Σ1
2) and

2. for every x , the set of E-generics over L[x ] is comeager
in the eventually different topology.

3. ω1 is inaccessible by reals.
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A Judah-Shelah theorem for E.

Abstract Judah-Shelah Theorem (Ikegami 2007). If P is a proper and
strongly arboreal forcing notion such that {c ; c is a Borel code and
Bc ∈ I∗P} is Σ1

2, then the following are equivalent:

1. Σ1
3-P-absoluteness,

2. every ∆1
2 set is P-measurable, and

3. for every real x and every T ∈ P, there is a I∗P -quasigeneric real in
[T ] over L[x ].

Theorem. The following are equivalent:

1. MeasE(∆1
2), and

2. for every x , there is an E-generic over L[x ].
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Locating ∆1
2(E)

I The ω1-iteration of E produces a model of MeasE(∆1
2)

without dominating or random reals, therefore LM(∆1
2)

and MeasL(∆1
2) are false there.

I In the ω1-iteration of Cohen forcing, we do not have an
eventually different real. In particular, MeasE(∆1

2) is
false.

I Every E-generic is also Cohen generic, so MeasE(∆1
2)

implies BP(∆1
2).

I Since the ω1-iteration of random forcing does not add
Cohen reals, MeasE(∆1

2) is false there.

I Dichotomy for iterated Hechler forcing. Any real in
a finite support iteration of Hechler forcing is either
dominating or not eventually different over the ground
model.
Corollary. In the ω1-finite support iteration of Hechler
forcing, MeasE(∆1

2) fails.
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Locating ∆1
2(E)

I The ω1-iteration of E produces a model of MeasE(∆1
2)

without dominating or random reals, therefore LM(∆1
2)

and MeasL(∆1
2) are false there.

I In the ω1-iteration of Cohen forcing, we do not have an
eventually different real. In particular, MeasE(∆1

2) is
false.

I Every E-generic is also Cohen generic, so MeasE(∆1
2)

implies BP(∆1
2).

I Since the ω1-iteration of random forcing does not add
Cohen reals, MeasE(∆1

2) is false there.

I Dichotomy for iterated Hechler forcing. Any real in
a finite support iteration of Hechler forcing is either
dominating or not eventually different over the ground
model.
Corollary. In the ω1-finite support iteration of Hechler
forcing, MeasE(∆1

2) fails.



Eventually
different forcing
and inaccessible

cardinals

Benedikt Löwe
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