Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

joint work with Jörg Brendle, Kobe (Japan)

Logic Colloquium 2009 Sofia, Bulgaria Friday, 31 July 2009

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Theorem (Solovay). $LM(\Sigma_2^1)$ if and only if for every *x*, the set of random reals over L[x] is a measure one set.

Solovay-style characterization theorem

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 - のへぐ

Theorem (Solovay). $LM(\Sigma_2^1)$ if and only if for every *x*, the set of random reals over L[x] is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $LM(\Delta_2^1)$ if and only if for every x, there is a random real over L[x].

Judah-Shelah-style characterization theorem

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

うしん 同一人用 人用 人用 人口 マ

Theorem (Solovay). $LM(\Sigma_2^1)$ if and only if for every x, the set of random reals over L[x] is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $LM(\Delta_2^1)$ if and only if for every x, there is a random real over L[x].

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M. Eventually different forcing and inaccessible cardinals

Theorem (Solovay). $LM(\Sigma_2^1)$ if and only if for every x, the set of random reals over L[x] is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $LM(\Delta_2^1)$ if and only if for every x, there is a random real over L[x].

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M.

Corollary. If ω_1 is inaccessible by reals, then LM(Σ_2^1).

Eventually different forcing and inaccessible cardinals

Theorem (Solovay). $LM(\Sigma_2^1)$ if and only if for every x, the set of random reals over L[x] is a measure one set.

Solovay-style characterization theorem

Theorem (Judah-Shelah). $LM(\Delta_2^1)$ if and only if for every x, there is a random real over L[x].

Judah-Shelah-style characterization theorem

Remember that a real is random over M if and only if it is not a member of any measure zero Borel set with a Borel code in M.

Corollary. If ω_1 is inaccessible by reals, then LM(Σ_2^1).

Corollary. In the ω_1 -iteration of random forcing, LM(Δ_2^1) holds.

Eventually different forcing and inaccessible cardinals

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Even more generally, a forcing notion $\mathbb P$ defines an ideal $\mathcal I_{\mathbb P}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_{\mathbb P}(\Gamma)$ for "all sets in Γ are $\mathbb P$ -measurable".

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_{\mathbb{P}}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_{\mathbb{P}}(\Gamma)$ for "all sets in Γ are \mathbb{P} -measurable".

A false hope:

- ► Meas_ℙ(Σ₂¹) if and only if for every x, the set of ℙ-generics over L[x] is co-𝒯_ℙ. ("Solovay Theorem")
- ► Meas_P(**Δ**¹₂) if and only if for every *x*, there is a P-generic over L[*x*]. ("Judah-Shelah Theorem")

Eventually different forcing and inaccessible cardinals

Even more generally, a forcing notion \mathbb{P} defines an ideal $\mathcal{I}_{\mathbb{P}}$, a corresponding notion of measurability, and a notion of genericity. We write $\text{Meas}_{\mathbb{P}}(\Gamma)$ for "all sets in Γ are \mathbb{P} -measurable".

A false hope:

- Meas_ℙ(Σ₂¹) if and only if for every x, the set of ℙ-generics over L[x] is co-𝒯_ℙ. ("Solovay Theorem")
- Meas_ℙ(**Δ**¹₂) if and only if for every *x*, there is a ℙ-generic over L[*x*]. ("Judah-Shelah Theorem")

It will turn out that these are not true in general, and a refinement is necessary.

Eventually different forcing and inaccessible cardinals

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D} -measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_{\mathbb{D}}$ be the set of all sets meager in the dominating topology.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D} -measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_{\mathbb{D}}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D} -measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_{\mathbb{D}}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.

Theorem (Brendle-L. 1998). The following are equivalent:

- Meas_{\mathbb{D}}(Σ_2^1),
- for every x, the set of Hechler reals over L[x] is co-meager in the dominating topology,

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D} -measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_{\mathbb{D}}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.

Theorem (Brendle-L. 1998). The following are equivalent:

- ▶ Meas_D(Σ¹₂),
- for every x, the set of Hechler reals over L[x] is co-meager in the dominating topology,
- ω_1 is inaccessible by reals.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The conditions of Hechler forcing define a topology called the dominating topology. We call a set \mathbb{D} -measurable if it has the Baire property in the dominating topology and let the ideal $\mathcal{I}_{\mathbb{D}}$ be the set of all sets meager in the dominating topology. Again, a real is Hechler over M if it is not an element of any Borel set meager in the dominating topology and coded in M.

Theorem (Brendle-L. 1998). The following are equivalent:

- ▶ Meas_D(Σ¹₂),
- for every x, the set of Hechler reals over L[x] is co-meager in the dominating topology,
- ω_1 is inaccessible by reals.

Theorem (Brendle-L. 1998). The following are equivalent:

- Meas_{\mathbb{D}}($\mathbf{\Delta}_2^1$),
- ▶ for every x, there is a Hechler real over L[x],
- ▶ BP(Σ¹₂).

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A diagram of implications

Eventually different forcing and inaccessible cardinals

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

 $\langle s, F \rangle \leq \langle t, G \rangle$ iff $t \subseteq s, G \subseteq F$, and $\forall i \in \operatorname{dom}(s \setminus t) \, \forall g \in G(s(i) \neq g(i)).$ Eventually different forcing and inaccessible cardinals

Benedikt Löwe

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへの

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle$$
 iff $t \subseteq s, G \subseteq F$, and $\forall i \in \operatorname{dom}(s \setminus t) \, \forall g \in G(s(i) \neq g(i)).$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle$$
 iff $t \subseteq s, G \subseteq F$, and $\forall i \in \operatorname{dom}(s \setminus t) \, \forall g \in G(s(i) \neq g(i)).$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

Proposition (Łabędzki 1997). The meager sets in the eventually different topology form an ideal $\mathcal{I}_{\mathbb{E}}$ which has a basis of Borel sets.

Eventually different forcing and inaccessible cardinals

Eventually different forcing \mathbb{E} consists of pairs $\langle s, F \rangle$, where $s \in \omega^{<\omega}$ and F is a finite set of reals with

$$\langle s, F \rangle \leq \langle t, G \rangle$$
 iff $t \subseteq s, G \subseteq F$, and $\forall i \in \operatorname{dom}(s \setminus t) \, \forall g \in G(s(i) \neq g(i)).$

Eventually different forcing is a c.c.c. forcing that generates the eventually different topology refining the standard topology on Baire space.

Proposition (Łabędzki 1997). The meager sets in the eventually different topology form an ideal $\mathcal{I}_{\mathbb{E}}$ which has a basis of Borel sets.

Theorem (Labedzki 1997). A real x is \mathbb{E} -generic over M if and only if it is \mathbb{E} -quasigeneric over M.

Eventually different forcing and inaccessible cardinals

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Let $\langle f_{\alpha};\alpha<\omega_{1}\rangle$ be a family of eventually different functions. Let

$$E_{\alpha} := \{ x \in \omega^{\omega} ; \exists^{\infty} k \in \omega(x(k) = f_{\alpha}(k)) \}.$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Let $\langle f_{\alpha};\alpha<\omega_{1}\rangle$ be a family of eventually different functions. Let

$$E_{\alpha} := \{x \in \omega^{\omega}; \exists^{\infty} k \in \omega(x(k) = f_{\alpha}(k))\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

These sets are nowhere dense in the eventually different topology.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Let $\langle f_{\alpha};\alpha<\omega_{1}\rangle$ be a family of eventually different functions. Let

$$E_{\alpha} := \{ x \in \omega^{\omega}; \exists^{\infty} k \in \omega(x(k) = f_{\alpha}(k)) \}.$$

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_{\alpha}; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{\alpha; E_{\alpha} \subseteq G\}$ is countable.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Let $\langle f_{\alpha};\alpha<\omega_{1}\rangle$ be a family of eventually different functions. Let

$$E_{\alpha} := \{ x \in \omega^{\omega}; \exists^{\infty} k \in \omega(x(k) = f_{\alpha}(k)) \}.$$

These sets are nowhere dense in the eventually different topology.

Theorem (Brendle). If G is meager in the eventually different topology and $\langle f_{\alpha}; \alpha < \omega_1 \rangle$ a family of eventually different functions then the set $\{\alpha; E_{\alpha} \subseteq G\}$ is countable.

Corollary (Łabędzki). The additivity of $\mathcal{I}_{\mathbb{D}}$ is \aleph_1 .

Ikegami's abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is \mathbb{P} -quasigeneric over M if if for all Borel codes $c \in M$ such that $B_c \in \mathcal{I}_{\mathbb{P}}^*$, we have that $r \notin B_c$. Here,

 $\mathcal{I}_{\mathbb{P}}^* := \{X ; \forall T \in \mathbb{P} \exists S \in \mathbb{P}(S \leq T \land [S] \cap X \in \mathcal{I}_{\mathbb{P}})\}.$

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Ikegami's abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is \mathbb{P} -quasigeneric over M if if for all Borel codes $c \in M$ such that $B_c \in \mathcal{I}_{\mathbb{P}}^*$, we have that $r \notin B_c$. Here,

 $\mathcal{I}_{\mathbb{P}}^* := \{X ; \forall T \in \mathbb{P} \exists S \in \mathbb{P}(S \leq T \land [S] \cap X \in \mathcal{I}_{\mathbb{P}})\}.$

For random, Cohen and Hechler reals, being generic is equivalent to being quasigeneric.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Ikegami's abstract Solovay and Judah-Shelah theorems (1).

Definition (Brendle-Halbeisen-L.-Ikegami). A real x is \mathbb{P} -quasigeneric over M if if for all Borel codes $c \in M$ such that $B_c \in \mathcal{I}_{\mathbb{P}}^*$, we have that $r \notin B_c$. Here,

 $\mathcal{I}_{\mathbb{P}}^* := \{X ; \forall T \in \mathbb{P} \exists S \in \mathbb{P}(S \leq T \land [S] \cap X \in \mathcal{I}_{\mathbb{P}})\}.$

For random, Cohen and Hechler reals, being generic is equivalent to being quasigeneric.

Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c \text{ is a Borel code and } B_c \in \mathcal{I}_{\mathbb{P}}^*\}$ is Σ_2^1 , then the following are equivalent:

- 1. Σ_3^1 - \mathbb{P} -absoluteness,
- 2. every $\mathbf{\Delta}_2^1$ set is \mathbb{P} -measurable, and
- for every real x and every T ∈ P, there is a I^{*}_P-quasigeneric real in [T] over L[x].

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

・ロト・西ト・西ト・西ト・日・ シック

Ikegami's abstract Solovay and Judah-Shelah theorems (2).

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

・ロト・西ト・ヨト・ヨー うんぐ

Ikegami's abstract Solovay and Judah-Shelah theorems (2).

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c is a Borel code and <math>B_c \in \mathcal{I}_{\mathbb{P}}^*\}$ is Σ_2^1 and $\mathcal{I}_{\mathbb{P}}$ is Borel generated, then the following are equivalent:

- 1. every $\mathbf{\Sigma}_2^1$ set is \mathbb{P} -measurable, and
- for every real x, the set {y; y is not I^{*}_ℙ-quasigeneric over L[x]} belongs to I^{*}_ℙ.

A Solovay theorem for \mathbb{E} .

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

A Solovay theorem for \mathbb{E} .

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c : c \text{ is a Borel code and } B_c \in \mathcal{I}_{\mathbb{P}}^*\}$ is Σ_2^1 and $\mathcal{I}_{\mathbb{P}}$ is Borel generated, then the following are equivalent:

- 1. every $\mathbf{\Sigma}_2^1$ set is \mathbb{P} -measurable, and
- 2. for every real x, the set $\{y ; y \text{ is not } \mathcal{I}_{\mathbb{P}}^*$ -quasigeneric over L[x] belongs to $\mathcal{I}_{\mathbb{P}}^*$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A Solovay theorem for \mathbb{E} .

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c : c \text{ is a Borel code and } B_c \in \mathcal{I}_{\mathbb{P}}^*\}$ is Σ_2^1 and $\mathcal{I}_{\mathbb{P}}$ is Borel generated, then the following are equivalent:

- 1. every $\mathbf{\Sigma}_2^1$ set is \mathbb{P} -measurable, and
- 2. for every real x, the set $\{y ; y \text{ is not } \mathcal{I}_{\mathbb{P}}^*$ -quasigeneric over $L[x]\}$ belongs to $\mathcal{I}_{\mathbb{P}}^*$.

Theorem. The following are equivalent:

- 1. $\mathsf{Meas}_{\mathbb{E}}(\mathbf{\Sigma}_2^1)$ and
- for every x, the set of E-generics over L[x] is comeager in the eventually different topology.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

A Solovay theorem for \mathbb{E} .

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

Abstract Solovay Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c : c \text{ is a Borel code and } B_c \in \mathcal{I}_{\mathbb{P}}^*\}$ is Σ_2^1 and $\mathcal{I}_{\mathbb{P}}$ is Borel generated, then the following are equivalent:

- 1. every $\mathbf{\Sigma}_2^1$ set is \mathbb{P} -measurable, and
- 2. for every real x, the set $\{y ; y \text{ is not } \mathcal{I}_{\mathbb{P}}^*$ -quasigeneric over $L[x]\}$ belongs to $\mathcal{I}_{\mathbb{P}}^*$.

Theorem. The following are equivalent:

- 1. $\mathsf{Meas}_{\mathbb{E}}(\mathbf{\Sigma}_2^1)$ and
- for every x, the set of E-generics over L[x] is comeager in the eventually different topology.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

3. ω_1 is inaccessible by reals.

The Diagram again

Eventually different forcing and inaccessible cardinals

The Diagram again

Eventually different forcing and inaccessible cardinals

A Judah-Shelah theorem for \mathbb{E} .

Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c \text{ is a Borel code and } B_c \in \mathcal{I}^{*}_{\mathbb{P}}\}$ is Σ_2^1 , then the following are equivalent:

- 1. Σ_3^1 - \mathbb{P} -absoluteness,
- 2. every $\pmb{\Delta}_2^1$ set is $\mathbb P\text{-measurable, and}$
- 3. for every real x and every $T \in \mathbb{P}$, there is a $\mathcal{I}_{\mathbb{P}}^*$ -quasigeneric real in [T] over L[x].

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

A Judah-Shelah theorem for \mathbb{E} .

Abstract Judah-Shelah Theorem (Ikegami 2007). If \mathbb{P} is a proper and strongly arboreal forcing notion such that $\{c; c \text{ is a Borel code and } B_c \in \mathcal{I}^*_{\mathbb{P}}\}$ is Σ_2^1 , then the following are equivalent:

- 1. Σ_3^1 - \mathbb{P} -absoluteness,
- 2. every $\mathbf{\Delta}_2^1$ set is \mathbb{P} -measurable, and
- 3. for every real x and every $T \in \mathbb{P}$, there is a $\mathcal{I}_{\mathbb{P}}^*$ -quasigeneric real in [T] over L[x].

Theorem. The following are equivalent:

1. $\mathsf{Meas}_{\mathbb{E}}(\mathbf{\Delta}_2^1)$, and

2. for every x, there is an \mathbb{E} -generic over $\mathbf{L}[x]$.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

The ω₁-iteration of E produces a model of Meas_E(Δ¹₂) without dominating or random reals, therefore LM(Δ¹₂) and Meas_L(Δ¹₂) are false there.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

・ロト ・母 ト ・ヨ ト ・ヨ ・ つへぐ

- The ω₁-iteration of E produces a model of Meas_E(Δ₂) without dominating or random reals, therefore LM(Δ₂) and Meas_L(Δ₂) are false there.
- In the ω₁-iteration of Cohen forcing, we do not have an eventually different real. In particular, Meas_ℝ(Δ¹₂) is false.

- The ω₁-iteration of E produces a model of Meas_E(Δ₂) without dominating or random reals, therefore LM(Δ₂) and Meas_L(Δ₂) are false there.
- In the ω₁-iteration of Cohen forcing, we do not have an eventually different real. In particular, Meas_E(Δ¹₂) is false.
- ► Every 𝔅-generic is also Cohen generic, so Meas_𝔅(Δ¹₂) implies BP(Δ¹₂).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Eventually different forcing and inaccessible cardinals

- The ω₁-iteration of E produces a model of Meas_E(Δ₂) without dominating or random reals, therefore LM(Δ₂) and Meas_L(Δ₂) are false there.
- In the ω₁-iteration of Cohen forcing, we do not have an eventually different real. In particular, Meas_E(Δ¹₂) is false.
- ► Every E-generic is also Cohen generic, so Meas_E(Δ¹₂) implies BP(Δ¹₂).
- Since the ω₁-iteration of random forcing does not add Cohen reals, Meas_ℝ(Δ¹₂) is false there.

Eventually different forcing and inaccessible cardinals

Benedikt Löwe

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

- The ω₁-iteration of E produces a model of Meas_E(Δ₂) without dominating or random reals, therefore LM(Δ₂) and Meas_L(Δ₂) are false there.
- In the ω₁-iteration of Cohen forcing, we do not have an eventually different real. In particular, Meas_E(Δ¹₂) is false.
- ► Every E-generic is also Cohen generic, so Meas_E(Δ¹₂) implies BP(Δ¹₂).
- Since the ω₁-iteration of random forcing does not add Cohen reals, Meas_ℝ(Δ¹₂) is false there.
- Dichotomy for iterated Hechler forcing. Any real in a finite support iteration of Hechler forcing is either dominating or not eventually different over the ground model.

Eventually different forcing and inaccessible cardinals

- The ω₁-iteration of E produces a model of Meas_E(Δ₂) without dominating or random reals, therefore LM(Δ₂) and Meas_L(Δ₂) are false there.
- In the ω₁-iteration of Cohen forcing, we do not have an eventually different real. In particular, Meas_E(Δ¹₂) is false.
- ► Every E-generic is also Cohen generic, so Meas_E(Δ¹₂) implies BP(Δ¹₂).
- Since the ω₁-iteration of random forcing does not add Cohen reals, Meas_ℝ(Δ¹₂) is false there.
- Dichotomy for iterated Hechler forcing. Any real in a finite support iteration of Hechler forcing is either dominating or not eventually different over the ground model.

Corollary. In the ω_1 -finite support iteration of Hechler forcing, $\text{Meas}_{\mathbb{E}}(\mathbf{\Delta}_2^1)$ fails.

Eventually different forcing and inaccessible cardinals

The final diagram

Eventually different forcing and inaccessible cardinals

The final diagram

Eventually different forcing and inaccessible cardinals

