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We have all seen tricks like this one:
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What makes them work?

We have also seen these:

1 = 1+1+(−1)+1+(−1)+ · · · = 2+(−1)+1+(−1)+1+ · · · = 2

What makes them fail?
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We have theorems, saying that if a series contains only
nonnegative terms, or more generally, is absolutely convergent,
then we can:

reorder the terms (more precisely, subject the terms’
indices to some permutation of ω)
split the series into two according to some criteria, sum
each one separately, and add the results
split each term as a row in a ω × ω matrix, then sum each
column, and sum the resulting series of results
. . .

and we’ll get the same result as when we sum the series
ordinarily (seek the limit of its partial sums).

Are all these theorems special cases of some general result?
Yes!
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The trick is to generalize the notion of “reordering”. Usually, it
means that the sequence is composed with (ie, the indices are
subjected to) some bijection from ω to ω.

To get the general result, we should consider bijections from ω
to a general ordinal α. For example, three operations on the
previous slide are the cases where α is ω, ω · 2 and ω2

respectively.

Of course, α cannot be arbitrary: bijections with ω must exist,
so α must be countable. However, it is the only necessary
condition: for every α ∈ ω1 \ ω, we can reorder the terms into an
α-sequence, and we’ll show that by summing it we get the
same result, assuming absolute convergence.

To do that, we must first explain what does it mean to sum a
hypersequence.
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Hyperseries
Definition
Let α ∈ On and let (ai : i ∈ α) be a sequence of reals.
Hyperseries sum

∑
i∈α

ai is defined inductively as follows:

∑

i∈α

ai :=





0 , for α = 0;∑
i∈β

ai + aβ , for α = β + 1;

lim
β∈α

∑
i∈β ai , for α ∈ Lim.

If all the limits in the above exist, we say that the hyperseries is
convergent.

Here, lim means the usual limit with respect to standard
topology on the reals, and order topology on ordinals, that is

L = lim
β∈α

sβ :⇐⇒ (∀ε > 0)(∃β0 ∈ α)(∀β ∈ α \ β0)
(
|sβ − L| < ε

)
.



Definition
More formally, a hyperseries is an ordered pair

(
(ai)i∈α, (sj)j∈β

)
,

where α and β are ordinals, ai and sj are all real numbers, and
both of the following hold:

1 for every j ∈ β, either:
j = 0 and sj = 0,
j = k + 1 and sj = sk + ak, for some k, or
j ∈ Lim and sj = limγ∈j sγ ;

2 and, either
β = α+ 1 (the hyperseries converges), or
β ∈ Lim, and limj∈β sj doesn’t exist in R
(the hyperseries diverges).



It is easily seen that to every hypersequence (ai)i∈α, there
corresponds a unique β and sequence (sj)j∈β such that the
above holds, so we are justified in denoting a hyperseries just
by
∑

(ai)i∈α.

If the hyperseries
∑

(ai)i∈α =
(
(ai)i∈α, (sj)j∈α+1

)
converges,

sα is called its sum, and denoted by
∑

i∈α ai.
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Main theorem
Theorem 1

Theorem
Let

∑
i ai be an absolutely convergent series of real numbers,

and let α ∈ ω1 \ ω. If f : α→ ω is a bijection, then the
hyperseries

∑
α

af (i) is convergent, and its sum is

∑

i∈α

af (i) =
∞∑

i=0

ai .

Proof (transfinite induction on α > ω).
If α = ω, it is a basic result of real analysis. Hyperseries is then
just a series, and an ordinary reordering takes place.
Now let α > ω and let f : α→ ω be a bijection. Suppose that
the theorem holds for all β ∈ α \ ω.
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Continuation (1)
case α = β + 1

Define a sequence (âi : i ∈ ω) ; ân :=

{
an , if n < f (β);
an+1 , if n > f (β).

Function

g : β → ω ; g(γ) :=

{
f (γ) , if f (γ) < f (β);
f (γ)− 1 , if f (γ) > f (β).

is a bijection, such that af (i) = âg(i) for all i ∈ β.

∑

i∈α

af (i) =
∑

i∈β

af (i)+af (β) =
∑

i∈β

âg(i)+af (β) =
∞∑

i=0

âi+af (β) =
∞∑

i=0

ai
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Continuation (2)
case α ∈ Lim

For β ∈ α \ ω define sequences (aβ
i : i ∈ ω) and (aβ

i : i ∈ ω):

aβ
n := amin(f [β]\Sn) ; aβ

n := amin(f [α\β]\Sn)

where Sn is a set of first n elements of f [β], while Sn is a set of
first n elements of f [α \ β].

For these sequences,

∞∑

i=0

ai =
∞∑

i=0

aβ
i +

∞∑

i=0

aβ
i



Continuation (3)
case α ∈ Lim

Now we need a bijection g : β → ω such that af (i) = aβ
g(i) for all

i ∈ β.

g(γ) := card
{

k ∈ f [β] | k < f (γ)
}
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Continuation (4)
case α ∈ Lim

Let ε > 0. We search for β0 ∈ α such that for all β ∈ α \ β0,
∣∣∣∣∣∣
∑

i∈β

af (i) −
∞∑

i=0

ai

∣∣∣∣∣∣
< ε .

We know that there exists n0 ∈ ω such that

(∀n ∈ ω \ n0)

( ∞∑

i=n

a+
i <

ε

2

∧ ∞∑

i=n

a−i <
ε

2

)
,

where x+ := max{x, 0} and x− := max{−x, 0}.
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Continuation (5)
case α ∈ Lim

Now we take:

β0 := min
{
γ ∈ α | γ > ω ∧ (∀γ′ ∈ α)(γ′ > γ → f (γ′) > n0)

}

= max
{

f−1(0), f−1(1), . . . , f−1(n0), ω
}

+ 1 < α .

For all β ∈ α \ β0, we have
∣∣∣∣∣∣
∑

i∈β

af (i) −
∞∑

i=0

ai

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑

i=0

aβ
i

∣∣∣∣∣ =
∣∣∣∣∣
∞∑

i=0

(aβ
i )

+ −
∞∑

i=0

(aβ
i )
−
∣∣∣∣∣ 6

6
∞∑

i=0

(aβ
i )

+
+
∞∑

i=0

(aβ
i )
−
<
ε

2
+
ε

2
= ε .

Q.E.D.
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General hyperseries
Theorem 2

Definition
We say that the hyperseries

∑
(ai)i∈α is absolutely convergent

if a hyperseries
∑

(|ai|)i∈α converges.

Theorem
Let α ∈ ω1 \ ω and let

∑
(ai)i∈α be an absolutely convergent

hyperseries. Then
∑

(ai)i∈α is also a convergent hyperseries. If
f : ω → α is a bijection, then

∑
i

af (i) is an absolutely convergent

series, and
∞∑

i=0

af (i) =
∑

i∈α

ai .
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General hyperseries

Proof of Theorem 2.
Let n ∈ ω be arbitrary, then |af (0)|+ |af (1)|+ · · ·+ |af (n)| is surely
less than the fixed number

∑
i∈α |ai|, so

∑
i |ai| is a series with

nonnegative terms and with partial sums bounded above, and
we know that it converges.

That means
∑

i ai is absolutely convergent, and by previous
theorem (using f−1 instead of f ), we know that

∑

i∈α

ai =
∞∑

i=0

af (i) .



Corollary that sums(!) previous results

Corollary
Let α and β be ordinals in ω1 \ ω, and let f : β → α be a
bijection between them. If

∑
(ai)i∈α is an absolutely convergent

hyperseries, then the hyperseries
∑

(af (i))i∈β is also absolutely
convergent, and ∑

i∈β

af (i) =
∑

i∈α

ai .



Further research

We used the results from the “ordinary” analysis,
corresponding to cases ω, ω + 1 and ω · 2 of our result.
They (especially this last one) have rather convoluted
proofs. Can they be streamlined into our general case?
(Probably yes.)
At one point, we split the series into positive and negative
terms. What about series of complex numbers? (No
problem — we split them in four quadrants.) What about
series in general Banach spaces? Are norm and
completeness enough? (Yes. Answered a few days ago.
Still needs to be pretty-written and proof-read.)
We sum over ω = τ(N). What about summing over order
types (of countable totally ordered sets) that are not
ordinals? It is pretty easy to generalize the definition and
the result to sums over π = τ(Z). What about η = τ(Q)?



Pitana?


