Morasses above a supercompact cardinal

Franqui Cárdenas

Universidad Nacional de Colombia Bogota - Colombia

Sofia, August 2009

Franqui Cárdenas Morasses above a supercompact cardinal

Theorem 1.

If κ is supercompact cardinal then for all $\lambda\geq\kappa,$ \Box_{λ} fails.

-

Theorem 1.

If κ is supercompact cardinal then for all $\lambda \geq \kappa$, \Box_{λ} fails.

Theorem 2.

If κ is supercompact cardinal then there is a forcing extension where κ is still supercompact and for $\lambda \geq \kappa$ regular there is a $(\lambda, 1)$ morass. In particular \Box_{κ}^* holds.

Question

Is it possible to have a supercompact cardinal κ and no $(\lambda, 1)$ -morass above κ ? (\Box_{λ}) ?

Main theorem

If κ is a supercompact cardinal, then after suitable preparatory forcing, κ remains strongly unfoldable and for $\kappa < \lambda$ regular \Box_{λ}^* fails. In particular there are no $(\lambda, 1)$ morasses.

Supercompact cardinals

 κ is θ -supercompact if there is an embedding $j: V \to M$ such that $cp(j) = \kappa, \ \theta < j(\kappa)$ and $M^{\theta} \subseteq M$.

Strongly unfoldable cardinals

 κ is θ -strongly unfoldable cardinal if for every transitive set M of size κ model of set theory with $\kappa \in M$ and $M^{<\kappa} \subseteq M$, there is an embedding $j: M \to N$ such that $cp(j) = \kappa$, $\theta < j(\kappa)$ and $V_{\theta} \subseteq N$.

Theorem (Laver)

If κ is supercompact cardinal, then after some suitable preparatory forcing, the supercompactness of κ becomes indestructible by all $<\kappa$ -directed closed forcing.

Theorem (Laver)

If κ is supercompact cardinal, then after some suitable preparatory forcing, the supercompactness of κ becomes indestructible by all < κ -directed closed forcing.

Theorem (Hamkins, Johnstone)

If κ is strongly unfoldable cardinal, then after some suitable preparatory forcing the strong unfoldability of κ becomes indestructible by all $< \kappa$ -closed posets that are κ^+ preserving.

Theorem (Hamkins, Johnstone)

If κ is supercompact cardinal, then after some suitable preparatory forcing, the strongly unfoldability of κ becomes indestructible by all $< \kappa$ -closed forcing (whether or not this forcing collapses κ^+).

Theorem (Hamkins, Johnstone)

If κ is supercompact cardinal, then after some suitable preparatory forcing, the strongly unfoldability of κ becomes indestructible by all $< \kappa$ -closed forcing (whether or not this forcing collapses κ^+).

Theorem (Hamkins)

If κ is supercompact cardinal, then after some suitable preparatory forcing, the supercompactness of κ becomes indestructible by all $< \kappa$ -closed forcing (whether or not this forcing collapses κ^+).

Main theorem

If κ is a supercompact cardinal, then after suitable preparatory forcing, κ remains supercompact and for $\kappa < \lambda$ regular \Box_{λ}^* fails. In particular there are no $(\lambda, 1)$ morasses.

Gap 1 morasses

- A (κ , 1) morass is $M = \langle \langle \varphi_{\zeta} | \zeta \leq \kappa \rangle, \langle G_{\zeta\xi} | \zeta < \xi \leq \kappa \rangle \rangle$ such that • For each $\zeta < \kappa$, $\varphi_{\zeta} < \kappa$ and $\varphi_{\kappa} = \kappa^+$.
 - For all $\zeta < \kappa$, $G_{\zeta\zeta+1} = \{id, f\}$, where f is a shift function : $\sigma_{\zeta} < \varphi_{\zeta}$ and $\varphi_{\zeta+1} = \varphi_{\zeta} + (\varphi_{\zeta} \sigma)$.
 - For $\zeta < \xi < \gamma$,

$$G_{\zeta\gamma} = \{ f \circ g \mid g \in G_{\zeta\xi}, f \in G_{\xi\gamma} \}$$

• If ζ is a limit ordinal

$$\varphi_{\zeta} = \bigcup_{\xi < \zeta} \{ f'' \varphi_{\xi} \mid f \in G_{\xi\zeta} \}$$

• For all γ limit ordinal, $\gamma \leq \theta$ and for all $\zeta_1, \zeta_2 \leq \gamma$ and $f_1 \in G_{\zeta_1\gamma}$, $f_2 \in G_{\zeta_2\gamma}$, there exists ξ , $\zeta_1, \zeta_2 < \xi < \gamma$ and $f_1' \in G_{\zeta_1\xi}$, $f_2' \in G_{\zeta_2\xi}$, $g \in G_{\xi\gamma}$ such that

$$\begin{array}{rcl} f_1 & = & g \circ f_1' \\ f_2 & = & g \circ f_2' \end{array}$$

Question

• $(\kappa, 1)$ -supercompact and $(\kappa, 2)$ morasses?

э

-

Thank you!

< ≣⇒

æ