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Ramsey’s theorem for trees

Let T = 2<ω. We write [T ]n for the collection of linearly ordered
n-tuples of nodes (n-chains) from T .

A subset S ⊆ T is a subtree isomorphic to T if it has a least node, and
every node in S has exactly two immediate successors in S.

Theorem (TT n
k )

Suppose [T ]n is colored with k colors. Then there is a subtree S
isomorphic to T such that [S]n is monochromatic.
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Reverse math

RCA0 + Σ0
2-IND proves ∀k TT 1

k .

I TT 1
k implies the infinite pigeonhole principle, which is strictly weaker

than Σ0
2-IND.

I [Corduan, Groszek, & Mileti, 2009] TT 1
k is properly stronger that

the infinite pigeonhole principle.

ACA0 is equivalent to ∀k TT n
k for n ≥ 3.

I ACA0 is equivalent to TT n
k for n ≥ 3 and k ≥ 2.

∀k TT 2
k implies Ramsey’s theorem for pairs.

I [Corduan, Groszek, & Mileti, 2009] There is a class of trees so that
the Ramsey Theorem for pairs for that class of trees is equivalent to
ACA0.
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Complexity of the homogeneous substructure

Theorem (C., Hirst, McNicholl)

If [T ]n is computably colored with k colors, then there is a Π0
n

monochromatic subtree isomorphic to T .

Theorem (C., Hirst, McNicholl)

For n ≥ 2, there is a computable coloring of [T ]n with no Σ0
n

monochromatic subtree.
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Complexity of the homogeneous substructure

If a 2-coloring of [T ]2 is computable, there is always a Π0
2

monochromatic subtree of T that is isomorphic to T .

Idea of proof: Let f be a computable 2-coloring of 2-chains of T .

For each σ ∈ T , define fσ(τ) = f (σ, τ) for τ ⊃ σ.

Use markers {pα}α∈T , associate to each marker a color (red or blue),
cα, and a subtree Tα that is monochromatic of color cα for fpα .

For α ⊂ β, Tα ⊃ Tβ, and
For α ⊂ β, f (pα,pβ) = cα.

Now, the tree S = {pα}α∈T colored by pα → cα has a monochromatic
subtree, Ŝ. This subtree is monochromatic for f .

Make this effective!
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Complexity of the homogeneous substructure

The n = 2 case is a base case for finding the complexity bounds of
(n + 1)-chains.

We reduce the question for colorings of (n + 1)-chains to that of
n-chains by producing a subtree where the color of an (n + 1)-chain
depends only in its first n elements. (This requires some effort.)

Extracting a monochromatic tree from this subtree requires a jump in
complexity, and so we arrive at the Π0

n+1 complexity bound for
colorings of (n + 1)-chains.
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