Computable partitions of trees

Joint work with Jeff Hirst and Timothy McNicholl

Jennifer Chubb

home.gwu.edu/~ jchubb

George Washington University, Washington, D.C.

ASL 2009 Logic Colloquium Sofia University
July 31, 2009

Ramsey's theorem for trees

Let $T=2^{<\omega}$. We write $[T]^{n}$ for the collection of linearly ordered n-tuples of nodes (n-chains) from T.

A subset $S \subseteq T$ is a subtree isomorphic to T if it has a least node, and every node in S has exactly two immediate successors in S.

Theorem ($T T_{k}^{n}$)

Suppose $[T]^{n}$ is colored with k colors. Then there is a subtree S isomorphic to T such that $[S]^{n}$ is monochromatic.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-$ IND.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-I N D$.
- [Corduan, Groszek, \& Mileti, 2009] $T T_{k}^{1}$ is properly stronger that the infinite pigeonhole principle.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-I N D$.
- [Corduan, Groszek, \& Mileti, 2009] $T T_{k}^{1}$ is properly stronger that the infinite pigeonhole principle.
- ACA_{0} is equivalent to $\forall k T T_{k}^{n}$ for $n \geq 3$.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-I N D$.
- [Corduan, Groszek, \& Mileti, 2009] $T T_{k}^{1}$ is properly stronger that the infinite pigeonhole principle.
- ACA_{0} is equivalent to $\forall k T T_{k}^{n}$ for $n \geq 3$.
- $A C A_{0}$ is equivalent to $T T_{k}^{n}$ for $n \geq 3$ and $k \geq 2$.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-I N D$.
- [Corduan, Groszek, \& Mileti, 2009] $T T_{k}^{1}$ is properly stronger that the infinite pigeonhole principle.
- ACA_{0} is equivalent to $\forall k T T_{k}^{n}$ for $n \geq 3$.
- $A C A_{0}$ is equivalent to $T T_{k}^{n}$ for $n \geq 3$ and $k \geq 2$.
- $\forall k T T_{k}^{2}$ implies Ramsey’s theorem for pairs.

Reverse math

- $\mathrm{RCA}_{0}+\Sigma_{2}^{0}$-IND proves $\forall k T T_{k}^{1}$.
- $T T_{k}^{1}$ implies the infinite pigeonhole principle, which is strictly weaker than $\Sigma_{2}^{0}-I N D$.
- [Corduan, Groszek, \& Mileti, 2009] $T T_{k}^{1}$ is properly stronger that the infinite pigeonhole principle.
- ACA_{0} is equivalent to $\forall k T T_{k}^{n}$ for $n \geq 3$.
- ACA_{0} is equivalent to $T T_{k}^{n}$ for $n \geq 3$ and $k \geq 2$.
- $\forall k T T_{k}^{2}$ implies Ramsey's theorem for pairs.
- [Corduan, Groszek, \& Mileti, 2009] There is a class of trees so that the Ramsey Theorem for pairs for that class of trees is equivalent to $A C A_{0}$.

Complexity of the homogeneous substructure

Theorem (C., Hirst, McNicholl)

If $[T]^{n}$ is computably colored with k colors, then there is a Π_{n}^{0} monochromatic subtree isomorphic to T.

Complexity of the homogeneous substructure

Theorem (C., Hirst, McNicholl)

If $[T]^{n}$ is computably colored with k colors, then there is a Π_{n}^{0} monochromatic subtree isomorphic to T.

Theorem (C., Hirst, McNicholl)

For $n \geq 2$, there is a computable coloring of $[T]^{n}$ with no Σ_{n}^{0} monochromatic subtree.

Complexity of the homogeneous substructure

If a 2 -coloring of $[T]^{2}$ is computable, there is always a Π_{2}^{0} monochromatic subtree of T that is isomorphic to T.

Idea of proof. Let f be a computable 2-coloring of 2-chains of T.
For each $\sigma \in T$, define $f_{\sigma}(\tau)=f(\sigma, \tau)$ for $\tau \supset \sigma$.
Use markers $\left\{\boldsymbol{p}_{\alpha}\right\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α}, and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

- For $\alpha \subset \beta, T_{\alpha} \supset T_{\beta}$, and
- For $\alpha \subset \beta, f\left(p_{\alpha}, p_{\beta}\right)=c_{\alpha}$.

Complexity of the homogeneous substructure

If a 2 -coloring of $[T]^{2}$ is computable, there is always a Π_{2}^{0} monochromatic subtree of T that is isomorphic to T.

Idea of proof. Let f be a computable 2-coloring of 2-chains of T.
For each $\sigma \in T$, define $f_{\sigma}(\tau)=f(\sigma, \tau)$ for $\tau \supset \sigma$.
Use markers $\left\{\boldsymbol{p}_{\alpha}\right\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α}, and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

- For $\alpha \subset \beta, T_{\alpha} \supset T_{\beta}$, and
- For $\alpha \subset \beta, f\left(p_{\alpha}, p_{\beta}\right)=c_{\alpha}$.

Now, the tree $S=\left\{p_{\alpha}\right\}_{\alpha \in T}$ colored by $p_{\alpha} \rightarrow c_{\alpha}$ has a monochromatic subtree, \hat{S}. This subtree is monochromatic for f.

Complexity of the homogeneous substructure

If a 2 -coloring of $[T]^{2}$ is computable, there is always a Π_{2}^{0} monochromatic subtree of T that is isomorphic to T.

Idea of proof. Let f be a computable 2-coloring of 2-chains of T.
For each $\sigma \in T$, define $f_{\sigma}(\tau)=f(\sigma, \tau)$ for $\tau \supset \sigma$.
Use markers $\left\{\boldsymbol{p}_{\alpha}\right\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α}, and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

- For $\alpha \subset \beta, T_{\alpha} \supset T_{\beta}$, and
- For $\alpha \subset \beta, f\left(p_{\alpha}, \boldsymbol{p}_{\beta}\right)=c_{\alpha}$.

Now, the tree $S=\left\{p_{\alpha}\right\}_{\alpha \in T}$ colored by $p_{\alpha} \rightarrow c_{\alpha}$ has a monochromatic subtree, \hat{S}. This subtree is monochromatic for f.

Make this effective!

Complexity of the homogeneous substructure

The $n=2$ case is a base case for finding the complexity bounds of ($n+1$)-chains.

We reduce the question for colorings of $(n+1)$-chains to that of n-chains by producing a subtree where the color of an $(n+1)$-chain depends only in its first n elements. (This requires some effort.)
Extracting a monochromatic tree from this subtree requires a jump in complexity, and so we arrive at the Π_{n+1}^{0} complexity bound for colorings of $(n+1)$-chains.

References

- Chubb, J., Hirst, J., and McNicholl, T., Reverse mathematics, computability, and partitions of trees, Journal of Symbolic Logic.
- Corduan, J., Groszek, M., and Mileti, J., Reverse mathematics and Ramsey's property for trees. (In preparation.)
- Jockusch, C., Ramsey's theorem and recursion theory, Journal of Symbolic Logic 37 (1972) 268-280

