Computable partitions of trees

Joint work with Jeff Hirst and Timothy McNicholl

Jennifer Chubb

home.gwu.edu/~jchubb

George Washington University, Washington, D.C.

ASL 2009 Logic Colloquium Sofia University July 31, 2009

Ramsey's theorem for trees

Let $T = 2^{<\omega}$. We write $[T]^n$ for the collection of linearly ordered *n*-tuples of nodes (*n*-chains) from *T*.

A subset $S \subseteq T$ is a *subtree isomorphic to* T if it has a least node, and every node in S has exactly two immediate successors in S.

Theorem (TT_k^n **)**

Suppose $[T]^n$ is colored with k colors. Then there is a subtree S isomorphic to T such that $[S]^n$ is monochromatic.

- RCA₀ + Σ_2^0 -IND proves $\forall k \ TT_k^1$.
 - ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.

- ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.
- [Corduan, Groszek, & Mileti, 2009] TT_k^1 is properly stronger that the infinite pigeonhole principle.

- ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.
- [Corduan, Groszek, & Mileti, 2009] TT_k^1 is properly stronger that the infinite pigeonhole principle.
- ACA₀ is equivalent to $\forall k \ TT_k^n$ for $n \ge 3$.

- ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.
- [Corduan, Groszek, & Mileti, 2009] TT_k^1 is properly stronger that the infinite pigeonhole principle.
- ACA₀ is equivalent to $\forall k \ TT_k^n$ for $n \ge 3$.
 - ACA₀ is equivalent to TT_k^n for $n \ge 3$ and $k \ge 2$.

- ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.
- [Corduan, Groszek, & Mileti, 2009] TT_k^1 is properly stronger that the infinite pigeonhole principle.
- ACA₀ is equivalent to $\forall k \ TT_k^n$ for $n \ge 3$.
 - ACA₀ is equivalent to TT_k^n for $n \ge 3$ and $k \ge 2$.
- $\forall k \ TT_k^2$ implies Ramsey's theorem for pairs.

- ► TT_k^1 implies the infinite pigeonhole principle, which is strictly weaker than Σ_2^0 -IND.
- [Corduan, Groszek, & Mileti, 2009] TT_k^1 is properly stronger that the infinite pigeonhole principle.
- ACA₀ is equivalent to $\forall k \ TT_k^n$ for $n \ge 3$.
 - ACA₀ is equivalent to TT_k^n for $n \ge 3$ and $k \ge 2$.
- $\forall k \ TT_k^2$ implies Ramsey's theorem for pairs.
 - [Corduan, Groszek, & Mileti, 2009] There is a class of trees so that the Ramsey Theorem for pairs for that class of trees is equivalent to ACA₀.

Theorem (C., Hirst, McNicholl)

If $[T]^n$ is computably colored with k colors, then there is a Π_n^0 monochromatic subtree isomorphic to T.

Theorem (C., Hirst, McNicholl)

If $[T]^n$ is computably colored with k colors, then there is a Π_n^0 monochromatic subtree isomorphic to T.

Theorem (C., Hirst, McNicholl)

For $n \ge 2$, there is a computable coloring of $[T]^n$ with no Σ_n^0 monochromatic subtree.

If a 2-coloring of $[T]^2$ is computable, there is always a Π_2^0 monochromatic subtree of T that is isomorphic to T.

Idea of proof: Let f be a computable 2-coloring of 2-chains of T.

For each $\sigma \in T$, define $f_{\sigma}(\tau) = f(\sigma, \tau)$ for $\tau \supset \sigma$.

Use markers $\{p_{\alpha}\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α} , and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

• For
$$\alpha \subset \beta$$
, $T_{\alpha} \supset T_{\beta}$, and

• For $\alpha \subset \beta$, $f(p_{\alpha}, p_{\beta}) = c_{\alpha}$.

If a 2-coloring of $[T]^2$ is computable, there is always a Π_2^0 monochromatic subtree of T that is isomorphic to T.

Idea of proof: Let f be a computable 2-coloring of 2-chains of T.

For each $\sigma \in T$, define $f_{\sigma}(\tau) = f(\sigma, \tau)$ for $\tau \supset \sigma$.

Use markers $\{p_{\alpha}\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α} , and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

• For
$$\alpha \subset \beta$$
, $T_{\alpha} \supset T_{\beta}$, and

• For
$$\alpha \subset \beta$$
, $f(p_{\alpha}, p_{\beta}) = c_{\alpha}$.

Now, the tree $S = \{p_{\alpha}\}_{\alpha \in T}$ colored by $p_{\alpha} \to c_{\alpha}$ has a monochromatic subtree, \hat{S} . This subtree is monochromatic for *f*.

If a 2-coloring of $[T]^2$ is computable, there is always a Π_2^0 monochromatic subtree of T that is isomorphic to T.

Idea of proof: Let f be a computable 2-coloring of 2-chains of T.

For each $\sigma \in T$, define $f_{\sigma}(\tau) = f(\sigma, \tau)$ for $\tau \supset \sigma$.

Use markers $\{p_{\alpha}\}_{\alpha \in T}$, associate to each marker a color (red or blue), c_{α} , and a subtree T_{α} that is monochromatic of color c_{α} for $f_{p_{\alpha}}$.

• For
$$\alpha \subset \beta$$
, $T_{\alpha} \supset T_{\beta}$, and

• For
$$\alpha \subset \beta$$
, $f(p_{\alpha}, p_{\beta}) = c_{\alpha}$.

Now, the tree $S = \{p_{\alpha}\}_{\alpha \in T}$ colored by $p_{\alpha} \to c_{\alpha}$ has a monochromatic subtree, \hat{S} . This subtree is monochromatic for *f*.

Make this effective!

The n = 2 case is a base case for finding the complexity bounds of (n + 1)-chains.

We reduce the question for colorings of (n + 1)-chains to that of *n*-chains by producing a subtree where the color of an (n + 1)-chain depends only in its first *n* elements. (This requires some effort.)

Extracting a monochromatic tree from this subtree requires a jump in complexity, and so we arrive at the Π_{n+1}^0 complexity bound for colorings of (n + 1)-chains.

References

- Chubb, J., Hirst, J., and McNicholl, T., Reverse mathematics, computability, and partitions of trees, *Journal of Symbolic Logic*.
- Corduan, J., Groszek, M., and Mileti, J., Reverse mathematics and Ramsey's property for trees. (In preparation.)
- Jockusch, C., Ramsey's theorem and recursion theory, *Journal of* Symbolic Logic 37 (1972) 268–280