

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density an splitting

Model completior

Completions and model completions of co-Heyting algebras

Luck Darnière Markus Junker

August 4, 2009

1 - (Co)dimension

Completions and model completions of co-Heyting algebras

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density an splitting

Model completior We consider only distributive bounded lattices in the language $\mathcal{L}_{\textit{lat}} = \{ \bm{0}, \bm{1}, \lor, \land \}.$

For every prime filter p of L let:

• height $\mathfrak{p} =$ the foundation rank of \mathfrak{p}

• coheight $\mathfrak{p} =$ the cofoundation rank of \mathfrak{p}

For every element a of L let:

• dim $a = \sup \{ \operatorname{coheight} \mathfrak{p} / \mathfrak{p} \text{ prime filter, } a \in \mathfrak{p} \}$

• codim $a = \min\{ \operatorname{height} \mathfrak{p} / \mathfrak{p} \text{ prime filter, } a \in \mathfrak{p} \}$

L is finite dimensional if every *a* in *L* has finite dimension.

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density an splitting

Model completior

Fact

$$dim a \lor b = max(dim a, dim b)$$

codim a \le b = min(codim a, codim b)

Figure: dim $\mathbf{0} = -\infty$

Luck Darnière Markus Junke

(Co)dimension

Completior

Precompactnes

Density an splitting

Model completior

Fact

$$dim a \lor b = max(dim a, dim b)$$

codim a \le b = min(codim a, codim b)

Figure: Points of dimension 0

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density an splitting

Model completior

Fact

$$\dim a \lor b = \max(\dim a, \dim b)$$

codim $a \lor b = \min(\operatorname{codim} a, \operatorname{codim} b)$

Figure: Points of dimension 1

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density an splitting

Model completior

Fact

$$dim a \lor b = max(dim a, dim b)$$

codim a \le b = min(codim a, codim b)

Figure: Points of dimension 2

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density and splitting

Model completion

Example

L = lattice of Zariski closed subset of the affine *n*-space k^n over an infinite field *k*. For every $A \in L$, (co)dimA coincides with the geometric (co)dimension of A (in k^n). A - B=Zariski closure of $A \setminus B$ belongs to L.

A co-Heyting algebra is a bounded distributive lattice with an additional binary operation $a - b = \min\{c \mid a \le b \lor c\}$.

Lemma

Let d be a positive integer. There are positive existential formulas ϕ_d , ψ_d in the language of co-Heyting algebras, such that for every co-Heyting algebra L and every $a \in L$:

 $\dim a \geq d \iff L \models \varphi_d(a)$

 $\operatorname{codim} a \geq d \iff L \models \psi_d(a)$

2 - Completion

Completions and model completions of co-Heyting algebras

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density and splitting

Model completior In every co-Heyting algebra L define:

$$\delta(a,b) = 2^{-\operatorname{codim}_L(a-b) \vee (b-a)}$$

Fact (Triangle ultrametric inequality)

 $\delta(a, c) \leq \max \delta(a, b), \delta(b, c)$

 δ is a pseudo-metric, hence defines a topology on *L*. The operations $\lor, \land, -$ are uniformly continuous for δ δ is an ultrametric iff its topology is separated. In this case we say that *L* is separated.

The completion \hat{L} of L with respect to δ is the set of equivalence classes of Cauchy sequences. The algebraic structure of L extends uniquely to \hat{L} by uniform continuity.

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactnes

Density an splitting

Model completion

Theorem

The completion of L is also the projective limit of all its finite dimensional quotients.

Remark

 $dL = \{a \mid \text{ codim } a \ge d\}$ is an ideal of *L*, for every positive integer *d*. The quotients L/dL form a projective system, and:

$$\widehat{L}\simeq \lim_{\leftarrow}(L/dL)_{d<\omega}$$

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completior

Theorem

The completion of L is also the projective limit of all its finite dimensional quotients.

Remark

 $dL = \{a \mid \text{ codim } a \ge d\}$ is an ideal of *L*, for every positive integer *d*. The quotients L/dL form a projective system, and:

$$\widehat{L}\simeq \lim_{\leftarrow}(L/dL)_{d<\omega}$$

Corollary

Every monotonic sequence in a compact subset of \hat{L} converges.

Corollary

If \widehat{L} is compact, then it is bi-Heyting.

3 - Precompactness

Completions and model completions of co-Heyting algebras

Luck Darnière, Markus Junker

(Co)dimension

Completio

Precompactness

Density and splitting

Model completior A co-Heyting algebra L is precompact if its completion is compact.

Theorem

In every variety ${\mathcal V}$ of co-Heyting algebras, the following are equivalent:

- $\textcircled{O} \ \mathcal{V} \ has \ the \ finite \ model \ property.$
- 2 Every algebra free in V is Hausdorff.
- Every algebra finitely presented in V is precompact Hausdorff.

Corollary

Every finitely presented co-Heyting algebra is precompact Hausdorff.

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density an splitting

Model completion

Remark

The class of precompact Hausdorff co-Heyting algebra is much larger than the class of finitely presented ones.

Theorem

Let L be a precompact Hausdorff co-Heyting algebra.

• L and \hat{L} have the same completely join (resp. meet) irreducible elements.

Luck Darnière, Markus Junker

(Co)dimension

Completio

Precompactness

Density an splitting

Model completior

Remark

The class of precompact Hausdorff co-Heyting algebra is much larger than the class of finitely presented ones.

Theorem

Let L be a precompact Hausdorff co-Heyting algebra.

- L and L have the same completely join (resp. meet) irreducible elements.
- Every join irreducible element of *L* is completely join irreducible.

Luck Darnière, Markus Junker

(Co)dimension

Completio

Precompactness

Density an splitting

Model completio

Remark

The class of precompact Hausdorff co-Heyting algebra is much larger than the class of finitely presented ones.

Theorem

Let L be a precompact Hausdorff co-Heyting algebra.

- L and L have the same completely join (resp. meet) irreducible elements.
- Every join irreducible element of L is completely join irreducible.
- Severy element of *L* is the complete meet of all the completely meet irreducible elements greater than it.

Luck Darnière, Markus Junker

(Co)dimension

Completio

Precompactness

Density and splitting

Model completior

Remark

The class of precompact Hausdorff co-Heyting algebra is much larger than the class of finitely presented ones.

Theorem

Let L be a precompact Hausdorff co-Heyting algebra.

- L and L have the same completely join (resp. meet) irreducible elements.
- Every join irreducible element of L is completely join irreducible.
- Severy element of L is the complete meet of all the completely meet irreducible elements greater than it.
- Every element of *L* is the complete join of its join irreducible components.

Luck Darnière Markus Junke

(Co)dimension

Completio

Precompactness

Density an splitting

Model completion Let L be a precompact Hausdorff co-Heyting algebra.

Question 1

Is L existentially closed in its completion?

Question 2

Is *L* an elementary substructure of \widehat{L} ?

Luck Darnière Markus Junke

(Co)dimension

Completio

Precompactness

Density and splitting

Model completion Let L be a precompact Hausdorff co-Heyting algebra.

Question 1

Is L existentially closed in its completion?

Question 2

Is *L* an elementary substructure of \widehat{L} ?

Theorem

Let \mathcal{F}_n be the free co-Heyting algebra with n generators. If $\mathcal{F}_n \equiv \widehat{\mathcal{F}}_n$ then $\mathcal{F}_n \preccurlyeq \widehat{\mathcal{F}}_n$

Ingredient of the proof: \mathcal{F}_n has only one set of free generators, definable in \mathcal{F}_n and $\widehat{\mathcal{F}}_n$ by the same formula.

4- Density and splitting

Completions and model completions of co-Heyting algebras

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density and splitting

Model completion The strong order \ll is defined on *L* by:

$$b \ll a \iff b \leq a \text{ and } a - b = a$$

Example

L = the co-Heyting algebra of Zariski closed subsets of k^n . $B \ll A$ iff B has empty interior in A.

Fact

In every co-Heyting algebra L, dim a is the foundation rank of a in $L \setminus \{0\}$ with respect to \ll .

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion We introduce now two axioms of co-Heyting algebras.

• Density (D1)

If $c \ll a \neq \mathbf{0}$ then there exists a non zero element b such that:

 $c \ll b \ll a$

• Splitting (S1)

If $b_1 \lor b_2 \ll a \neq \mathbf{0}$ then their exists non zero elements a_1 and a_2 such that:

$$a - a_2 = a_1 \ge b_1$$

 $a - a_1 = a_2 \ge b_2$
 $a_1 \land a_2 = b_1 \land b_2$

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion

Remark

Since $a_1 \vee a_2 = (a - a_2) \vee a_2 = a$ the second axiom allows to split *a* in two pieces a_1 , a_1 along b_1 , b_2 (so the name).

L = the lattice of closed semi-algebraic subsets of \mathbb{R}^2 .

Figure: Splitting of an ellipse A along $B_1 = B_2$

Luck Darnière Markus Junke

(Co)dimensior

Completion

Precompactnes

Density and splitting

Model completion

Remark

Since $a_1 \vee a_2 = (a - a_2) \vee a_2 = a$ the second axiom allows to split *a* in two pieces a_1 , a_1 along b_1 , b_2 (so the name).

L = the lattice of closed semi-algebraic subsets of \mathbb{R}^2 .

Figure: Splitting of an ellipse A along $B_1 = B_2$

Luck Darnière Markus Junke

(Co)dimension

Completior

Precompactnes

Density and splitting

Model completior

Remark

In order to split A along B_1 , B_2 in L, it is necessary (not sufficient) that $A \setminus (B_1 \cup B_2)$ is not connected.

Figure: No splitting... in L

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completior

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion The map $f : A \in L \mapsto \pi^{-1}(A)$ embeds L into a co-Heyting algebra L' in which the image of A can be splited along the images B'_1 , B'_1 of B_1 , B_2 :

$$f(A) = \pi^{-1}(A) = A'_1 \cup A'_2$$

Theorem

Every co-Heyting algebra embeds into a co-Heyting algebra satisfying the density and splitting axioms D1, S1.

Corollary

Every existentially closed co-Heyting algebra satisfies the density and splitting axioms D1, S1.

Luck Darnière Markus Junke

(Co)dimension

Completior

Precompactnes

Density and splitting

Model completior

Theorem

Let L_1, L_2, L be co-Heyting algebras. If L_2 is finite and L satisfies axioms D1 and S1 then every embedding of L_1 into L extends to an embedding of L_2 into L.

Question 3

If L_1 , L_2 are finitely generated and L satisfies axioms D1 and S1, does every embedding of L_1 into L extend to an embedding of L_2 into an elementary extension of L?

5- Model completion

Completions and model completions of co-Heyting algebras

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density and splitting

Model completion

Theorem (L. Maksimova)

There are exactly eight varieties of co-Heyting algebras having the amalgamation property.

Remark

- Only the theories T_1, \ldots, T_8 of these varieties can have a model-completion.
- We can forget about T₈ (theory of the one-point co-Heyting algebra) and T₇ (theory of boolean algebras) whose model-theoretic properties are well know.

Theorem (A. Pitts)

The second order intuitionistic propositional calculus is interpretable in the first order one.

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion

Theorem (A. Pitts, S. Ghilardi, M. Zawadowski)

Each theory T_1, \ldots, T_6 has a model-completion.

Ingredients of the proof:

- The amalgamation property for T_1, \ldots, T_6 .
- Pitts's theorem for T_1 (the theory of all co-Heyting algebras), and an adaptation of it for T_2 .
- General model-theoretic non-sense for T_3, \ldots, T_6 , using that these theories are locally finite.

Remark

No meaningful axiomatization of these model-completions is given by this approach.

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion

For each k between 1 and 6, we introduced two axioms Dk, Sk adapting to T_k the density and splitting axioms D1, S1 of T_1 .

Theorem

Every model of T_k embeds into a model of T_k satisfying the density and splitting axioms Dk and Sk.

Theorem

Let L_1, L_2, L be models of T_k . If L_2 is finite and L satisfies axioms Dk and Sk then every embedding of L_1 into L extends to an embedding of L_2 into L.

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactness

Density and splitting

Model completion

Since every finitely generated model of T_k is finite for k = 3, 4, 5, 6 it follows immediately that:

Corollary

For k = 3, 4, 5, 6 the theory T_k has a model-completion which is axiomatized by the density and splitting axioms Dk, Sk.

Luck Darnière Markus Junke

(Co)dimension

Completion

Precompactnes

Density and splitting

Model completion Since every finitely generated model of T_k is finite for k = 3, 4, 5, 6 it follows immediately that:

Corollary

For k = 3, 4, 5, 6 the theory T_k has a model-completion which is axiomatized by the density and splitting axioms Dk, Sk.

Let \mathcal{L}_k denote the superintuitionistic logic corresponding to the variety of Heyting algebras whose duals are models of T_k .

Corollary

The second order propositional calculus of \mathcal{L}_k is interpretable in the first order one.

Luck Darnière, Markus Junker

(Co)dimension

Completion

Precompactness

Density and splitting

Model completion

References

- Codimension and pseudometric in co-Heyting algebras (arXiv:0812.2026) *Submitted*
- On Bellissima's construction of the finitely generated free Heyting algebras, and beyond (arXiv:0812.2027) Submitted
- Model completion of equational theories of co-Heyting algebras (Soon on Arxiv) Looking for a journal