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Overview

1. Definitions of algebras of arithmetic circuits.

2. Circuit definable sets and functions.

3. Some algebraic properties.

4. Decidability questions.



The structures

N := 〈ω,+, 0, ·, 1〉, Cm(N) := 〈2ω,∪,∩, ∅, ω,+, {0}, •, {1}〉
N

+ = 〈ω,+, 0〉, Cm(N)+ := 〈2ω,∪,∩, ∅, ω,+, {0}〉
N
· = 〈ω, ·, 1〉 Cm(N)• := 〈2ω,∪,∩, ∅, ω, •, {1}〉

+ a + b = {n + m : n ∈ a, m ∈ b}.
· a • b = {n · m : n ∈ a, m ∈ b}.
≥ ↑ a = {k : (∃n)[n ∈ a and n ≤ k}.
≤ ↓ a = {k : (∃n)[n ∈ a and k ≤ n}.

If A is an atomic Boolean algebra with operators, we set

A0 := Subalgebra of A generated by the constants,

A1 := Subalgebra of A generated by the atoms.
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The elements of Cm(N)0 are called arithmetic circuits (McKenzie,
Wagner, 2003,2007).
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◮ Some well-known mathematical conjectures can be ‘expressed’
in terms of arithmetic circuits.

◮ Consider the circuit

τg = τe ∩ ({0} ∪ ({1} + {1}) ∪ (τp + τp))

where τe is the circuit defining the even numbers, and τp the
circuit defining the primes.



◮ Some well-known mathematical conjectures can be ‘expressed’
in terms of arithmetic circuits.
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τg = τe ∩ ({0} ∪ ({1} + {1}) ∪ (τp + τp))

where τe is the circuit defining the even numbers, and τp the
circuit defining the primes.

◮ The set τg is empty if and only if Goldbach’s conjecture is
true.



Functions

◮ Any circuit τ featuring variables x1, . . . , xk defines a function
τ(x1, . . . xk) : (2ω)k → 2ω in the obvious way.

◮ Some circuit–definable functions:
◮ The circuit τu(x) = x + ω defines the ‘up’-function:
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◮ Any circuit τ featuring variables x1, . . . , xk defines a function
τ(x1, . . . xk) : (2ω)k → 2ω in the obvious way.

◮ Some circuit–definable functions:
◮ The circuit τu(x) = x + ω defines the ‘up’-function:

↑ x = {n ∈ ω : (∃m ∈ x), m ≤ n}

◮ The circuit τd(x) = ({0} • x) + ω defines the discriminator
function

τd (x) =

{

∅, if x = ∅,

ω, otherwise.

◮ The circuit τmin(x) = ((x + ω) + {1}) ∩ x defines the
minimum function for non–empty sets.



Some functions not definable by circuits

↓ s = {n ∈ ω : (∃m ∈ s)n ≤ m}



Some functions not definable by circuits

↓ s = {n ∈ ω : (∃m ∈ s)n ≤ m}

s−t = {k ∈



Some functions not definable by circuits

↓ s = {n ∈ ω : (∃m ∈ s)n ≤ m}

s−t = {k ∈



Some functions not definable by circuits

↓ s = {n ∈ ω : (∃m ∈ s)n ≤ m}

s−t = {k ∈ ω : (∃n,m ∈ ω)[n ∈ s, m ∈ t, k = n − m]}

Fmax(s) = {max(s)} for finite, non-empty s

Ffin(s) =

{

ω if s is finite

∅ otherwise

Σs if s is finite

|s| if s is finite.



Sets of formulas

Suppose that K is a class of algebras of the same type O. We
consider the following sets of formulas in the language of O (plus
equality):

1. The first-order theory FO K of K: The set of first-order
formulas in the language O true in all algebras in K.

2. The equational theory Eq K of K: The set of formulas in the
language of the forms τ = σ whose universal closures are true
in K.

3. The satisfiable equations EqSat K of K: The set of formulas
of the forms τ = σ whose existential closures are true in each
member of K.
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Algebras and equations

◮ Cm(N+)0 ∼= Cm(N•)0, and their universe is the collection of
finite or co–finite subsets of ω.

◮ The congruences of Cm(N+) form a chain of type 1 + ω∗.

◮ Var Cm(N+) is generated by countably many finite finitely
based subdirectly irreducible algebras.

◮ Eq Cm(N+)0 = Eq Cm(N+).

◮ Eq Cm(N+,d)0 6= Eq Cm(N+,d).

◮ FO Cm(N+)0 6= FO Cm(N+).



Decidability questions 1

Membership problem: Given an arithmetic circuit τ and a number
m, determine whether m ∈ τ .

Emptiness problem: Given an arithmetic circuit τ , determine
whether τ = ∅.

Satisfiability problem: Given an n–ary term function τ(x1, . . . , xn)
and some k ∈ ω, determine whether there are
k1, . . . , kn ∈ ω such that k ∈ τ(k1, . . . , kn).

◮ Problems 1 and 2 are obviously computably equivalent: if one
is decidable, so is the other. It is not known whether any of
these problems is decidable.



◮ Variable-free arithmetic circuits without the •-gate are called
integer expressions.

◮ The membership and non-emptiness problems for integer
expressions are PSpace-complete (Stockmeyer and Meyer
1973).

◮ Complexity-theortic results for various collections of gates can
be found in (McKenzie and Wagner 2003, 2007), (Yang 2000)
(Glaßer et al. 2007, 2007)

◮ For results on equations involving integer expressions, see (Jeż
and Okhotin 2008, 2008).
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◮ The recognition complexity for every fixed circuit-definable set
is relatively low.

Theorem
Every circuit-definable set is in the bounded arithmetic hierarchy,

BA (and hence its characteristic function is in E0
∗
).

◮ Hence, every circuit-definable set is certainly:
◮ in the polynomial hierarchy, PH;
◮ in DSpace(n) = E2

∗ .

◮ All circuit-definable sets are certainly context-sensitive.
However, the set of primes, which is circuit-definable, is not
context-free (Hartmanis and Shank 1968).

◮ Theorem 1 notwithstanding, no nice examples of
non-circuit-definable sets are known!



◮ First main result: functions from N to N having (roughly
speaking) infinite range and sublinear growth are not
circuit-definable:

Theorem
Let f : N → N be a function. If the set

{f (n) : n ∈ N, f (n) < n}

is infinite, then f is not circuit-definable.



◮ Second main result: functions from 2N to 2N which (roughly
speaking) have finite range and fail to converge on certain
‘sparse’ chains under inclusion are not circuit-definable.

Definition
Let s be a finite, non-empty set of numbers, t a set of numbers,
and m a number. We write s ⊑m t if m ≥ max(s) and
s = t ∩ {i | i ≤ m}.

Theorem
Let F : 2N → 2N be a function with finite range. And suppose

that, for all finite, non-empty s ⊆ N and all m ≥ max(s), there

exists t ⊆ N for which s ⊑m t and F (t) 6= F (s). Then F is not

circuit-definable.


