Splitting and Antisplitting Theorems in Classes of Low Degrees

Marat Kh. Faizrahmanov

Marat.Faizrahmanov@ksu.ru

Turing Jumps in the Ershov Hierarchy

A Turing degree $\mathbf{a} = deg(A)$ is called superlow if $A' \in \Delta_{\omega}^{-1}$ (or, equivalently, $A' \leq_{\mathrm{tt}} \emptyset'$).

Theorem 1. The set A is superlow if and only if $A' \in \Delta_{\omega \times n}^{-1}$ for some n.

Theorem 2. More generally, the proper levels for Turing jumps in the Ershov hierarchy for the natural notation system are Σ_1^{-1} and $\Delta_{\omega^n}^{-1}$, n > 0.

Theorem 3. For each n > 0 the class

$$\{A: A' \in \Delta_{\omega^n}^{-1}\}$$

(and in particular the class of all superlow sets) has a Δ_2^0 -computable numbering.

A Turing degree **a** is called *totally* ω -*c.e.* if every function $g \leq_T \mathbf{a}$ is ω -c.e. It is known that each superlow c.e. degree is totally ω c.e.

Three incomparable elements \mathbf{a}_0 , \mathbf{a}_1 and \mathbf{b} in an upper semilattice form a *weak critical triple* if $\mathbf{a}_0 \cup \mathbf{b} = \mathbf{a}_1 \cup \mathbf{b}$ and there is no $\mathbf{c} \leq \mathbf{a}_0$, \mathbf{a}_1 with $\mathbf{a}_0 \leq \mathbf{b} \cup \mathbf{c}$. Downey, Greenberg and Weber (2007) have proved that a degree \mathbf{a} is totally ω -c.e. if and only if \mathbf{a} does not bound a weak critical triple.

The Joins of Superlow c.e. Degrees

Let **C** be the semilattice of all c.e. degrees, and let

 $J = \{a \cup b : a, b \text{ are superlow c.e. degrees}\}.$ Bickford and Mills (1982) have proved, that $0' \in J.$

Theorem 4. For all superlow c.e. degrees \mathbf{a}_0 , \mathbf{a}_1 , \mathbf{a}_2 there are superlow c.e. degrees \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 , such that

 $\mathbf{a}_0 \cup \mathbf{a}_1 \cup \mathbf{a}_2 = \mathbf{b}_0 \cup \mathbf{b}_1 = \mathbf{b}_0 \cup \mathbf{b}_2 = \mathbf{b}_1 \cup \mathbf{b}_2.$

Corollary 5. J is an upper semilattice.

Theorem 6. There is a c.e. degree **a** such that for all c.e. degrees \mathbf{b}_0 , \mathbf{b}_1 , \mathbf{b}_2 if

 $\mathbf{a} = \mathbf{b}_0 \cup \mathbf{b}_1 = \mathbf{b}_0 \cup \mathbf{b}_2 = \mathbf{b}_1 \cup \mathbf{b}_2$

then \mathbf{b}_i is not totally ω -c.e. for some i < 3.

Corollary 7. The upper semilattices **C** and **J** are not elementary equivalent.

Proof. Let Φ be the following formula:

 $\forall \mathbf{x} \exists \mathbf{y}_0 \exists \mathbf{y}_1 \exists \mathbf{y}_2 [\mathbf{x} = \mathbf{y}_0 \cup \mathbf{y}_1 = \mathbf{y}_0 \cup \mathbf{y}_2 = \mathbf{y}_1 \cup \mathbf{y}_2 \&$

 \mathbf{y}_i does not bound a weak critical triple, i < 3].

$$\mathbf{C} \models \neg \Phi, \\ \mathbf{J} \models \Phi.$$

The low c.e. degrees and the low 2-c.e. degrees are not elementary equivalent.

In the following theorem the class Δ_a^{-1} is the Δ -level of the Ershov Hierarchy corresponding to the notation $a \in O$.

Theorem 8. For all notation $a \in O$ there is a low 2-c.e. set D such that for all 2-c.e. sets E and F if $E' \in \Delta_a^{-1}$, $F' \in \Delta_a^{-1}$ then $D \not\equiv_T E \oplus F$. **Corollary 9.** (Independently with M. Yamaleev). The low c.e. degrees and the low 2-c.e. degrees are not elementary equivalent.

Proof. Let Φ be the following formula:

 $\exists \mathbf{x}_0 \exists \mathbf{x}_1 \forall \mathbf{y} \exists \mathbf{y}_0 \leq \mathbf{x}_0 \exists \mathbf{y}_1 \leq \mathbf{x}_1 [\mathbf{y} = \mathbf{y}_0 \cup \mathbf{y}_1].$ $D_1^{low} \models \Phi,$ $D_2^{low} \models \neg \Phi.$