Bounding, splitting and almost disjoint families

Vera Fischer

Kurt Gödel Research Center University of Vienna

31 July 2009 Logic Colloquium 2009

イロト イヨト イヨト イヨト

æ

Definition

A family $\mathcal{H} \subseteq {}^{\omega}\omega$ is unbounded, if there is no $g \in {}^{\omega}\omega$ which dominates all elements of \mathcal{H} . The bounding number \mathfrak{b} is the minimal cardinality of an unbounded family.

Definition

A family $S \subseteq [\omega]^{\omega}$ is splitting, if for every $A \in [\omega]^{\omega}$ there is $B \in S$ such that both $A \cap B$ and $A \cap B^c$ are infinite. The splitting number \mathfrak{s} is the minimal cardinality of a splitting family.

Definition

A family $\mathcal{A} \subseteq [\omega]^{\omega}$ is maximal almost disjoint if all distinct elements of \mathcal{A} have finite intersection and for every $C \in [\omega]^{\omega}$ there is $A \in \mathcal{A}$ such that $|A \cap C| = \omega$. The maximal almost disjointness number \mathfrak{a} is the minimal size of a maximal almost disjoint family.

イロト イポト イヨト イヨト

The bounding number is less or equal the almost disjointness number.

The bounding and the splitting numbers are independent.

- In 1985 J. Baumgartner and P. Dordal showed that s < b in the Hechler model.
- In 1984 S. Shelah showed the consistency of b < s using countable support iteration of proper forcing posets.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (S. Shelah, 1984)

(CH) There is a proper forcing notion Q of size c which is almost ${}^{\omega}\omega$ -bounding and adds a real not split by the ground model reals.

Thus under an \aleph_2 -length iteration of Q one obtains the consistency of $\mathfrak{b} = \omega_1 < \mathfrak{s} = \omega_2$. Similar arguments give the consistency of $\mathfrak{b} = \omega_1 < \mathfrak{s} = \mathfrak{a} = \omega_2$, $\mathfrak{b} = \mathfrak{a} = \omega_1 < \mathfrak{s} = \omega_2$.

Definition (S. Shelah, 1984)

Let $\mathcal{P} \subseteq [\omega]^{<\omega}$ be an upwards closed family, which does not contain singletons. Then \mathcal{P} inductively induces a function $h : [\omega]^{<\omega} \to \omega$, called a logarithmic measure, as follows:

•
$$h(e) > 0$$
 if and only if $e \in \mathcal{P}$

for every ℓ ≥ 1 and e ∈ [ω]^{<ω}, h(e) ≥ ℓ + 1 if and only if for all e₀, e₁ such that e = e₀ ∪ e₁ either h(e₀) ≥ ℓ or h(e₁) ≥ ℓ.
 For every e ∈ [ω]^{<ω} let h(e) = max{ℓ : h(e) ≥ ℓ}.

소리가 소문가 소문가 소문가

Example

Let $\mathcal{P} = \{a \in [\omega]^{<\omega} : |a| \ge 2\}$ and let h be the induced logarithmic measure. Then $h(a) = \min\{j : |a| \le 2^j\}$.

Sufficient condition for high values

Let *h* be an induced logarithmic measure. If for every finite partition $\omega = \bigcup_{j \in n} A_j$, there is A_j which contains a positive set, then for every $k \in \omega$ and finite partition $\omega = \bigcup_{j \in n} A_j$ there is A_j which contains a set of measure $\geq k$.

소리가 소문가 소문가 소문가

Definition (S. Shelah, 1984)

Let Q be the set of all pairs (u, \mathcal{T}) where $u \in [\omega]^{<\omega}$ and

 $\mathcal{T} = \langle (s_i, h_i)
angle_{i \in \omega}$ is a sequence of logarithmic measures such that

- 1. $\max u < \min s_0$
- 2. max $s_i < \min s_{i+1}$ for all $i \in \omega$
- 3. $\langle h_i(s_i) : i \in \omega \rangle$ is unbounded.

The sequence $T = \langle (s_i, h_i) : i \in \omega \rangle$ is called a pure condition. Let $int(T) = \bigcup_{i \in \omega} s_i$. Note that if $(u, T) \in Q$, then (u, int(T)) is a Mathias condition.

Mimicking the almost bounding property Generic Analogue Large spread

Definition (V.F., J. Steprans, 2008)

Let C be a centered family of pure conditions. Then Q(C) is the suborder of Q of all (u, T) such that $\exists R \in C(R \leq T)$.

- Q(C) is σ -centered.
- If $C \subseteq Q(C')$, then C' is said to extend C.
- ▶ If $T \not\perp C$ and $\omega = \bigcup_{j \in n} A_j$, then $\exists j \in n \exists R \leq T(R \not\perp C)$ such that $int(R) \subseteq A_j$.

Mimicking the almost bounding property Generic Analogue Large spread

Theorem (V.F., J. Steprans, 2008)

Let κ be a regular uncountable cardinal, $cov(\mathcal{M}) = \kappa$, $\mathcal{H} \subseteq {}^{\omega}\omega$ an unbounded, directed family of size κ . Let C be a centered family, $|C| < \kappa$ and let \dot{f} be a good Q(C)-name for a real. Then there are a centered family C' extending C, |C| = |C'| and $h \in \mathcal{H}$ such that $\Vdash_{Q(C'')} \check{h} \not\leq^* \dot{f}$, for every C'' extending C'.

Mimicking the almost bounding property Generic Analogue Large spread

Theorem (V.F., J. Steprans, 2008)

Let κ be a regular uncountable cardinal, $cov(\mathcal{M}) = \kappa = \mathfrak{c}$, $\mathcal{H} \subseteq {}^{\omega}\omega$ an unbounded directed family of size κ . Then there is a centered family C, $|C| = \kappa$ such that Q(C) preserves the unboundedness of \mathcal{H} and adds a real not split by $V \cap [\omega]^{\omega}$.

イロト イポト イヨト イヨト

Mimicking the almost bounding property Generic Analogue Large spread

Proof Let $\mathcal{N} = {\dot{f}_{\alpha}}_{\alpha < \kappa}$ enumerate all Q(C') names for functions in ${}^{\omega}\omega$ where $|C'| < \kappa$. Let $\mathcal{A} = {A_{\alpha+1}}_{\alpha < \kappa}$ enumerate $V \cap [\omega]^{\omega}$. By induction of length κ obtain a sequence $\langle C_{\alpha} : \alpha < \kappa \rangle$ such that $\forall \alpha < \beta C_{\alpha} \subseteq Q(C_{\beta}), |C_{\alpha}| < \kappa$ as follows:

• Begin with any T and $C_0 = \{T \setminus v : v \in [\omega]^{<\omega}\}$

• If
$$\alpha$$
 is a limit, let $C_{\alpha} = \bigcup_{\beta < \alpha} C_{\beta}$

cont.

3

Cardinal Characteristics Logarithmic Measures Large Spread Further Directions Mimicking the almost bounding property Generic Analogue Large spread

If $\alpha = \beta + 1$, let \dot{g}_{α} be the name with least index in $\mathcal{N} \setminus \{\dot{g}_{\gamma+1}\}_{\gamma < \beta}$ which is a $Q(C_{\beta})$ -name. Find C_{α} such that $|C_{\alpha}| = |C_{\beta}|$ and

- ► If \dot{g}_{α} is good, $\exists h_{\alpha} \in \mathcal{H} \forall C''$ extending $C_{\alpha} \Vdash_{Q(C'')} ``\check{h}_{\alpha} \not<^* \dot{g}_{\alpha}"$
- If \dot{g}_{α} is not good, then \dot{g}_{α} is not a $Q(C_{\alpha})$ -name
- ► $\exists T_{\alpha} \in Q(C_{\alpha})(int(T_{\alpha}) \subseteq A_{\alpha} \text{ or } int(T_{\alpha}) \subseteq A_{\alpha}^{c}).$

Then let $C = \bigcup_{\alpha < \kappa} C_{\alpha}$.

cont.

3

Mimicking the almost bounding property Generic Analogue Large spread

${\mathcal H}$ is unbounded

If \dot{f} is a Q(C)-name, then $\exists \beta \in \kappa$ such that \dot{f} is a good $Q(C_{\beta})$ -name and is the name with least index in $\mathcal{N} \setminus \{\dot{g}_{\gamma+1}\}_{\gamma < \beta}$ which is a $Q(C_{\beta})$ -name. Then $(\mathcal{H} \text{ is unbounded})^{V^{Q(C)}}$.

\exists a real not split by the ground model reals

Let G be Q(C)-generic. If $A \in V \cap [\omega]^{\omega}$ then $\exists (u, T) \in G$ such that $int(T) \subseteq A$ or $int(T) \subseteq A^{c}$. If $U_{G} = \bigcup \{u : \exists T(u, T) \in G\}$, then $U_{G} \subseteq^{*} int(T)$ for all T such that $\exists u(u, T) \in G$.

イロト イポト イヨト イヨト

Mimicking the almost bounding property Generic Analogue Large spread

Theorem (V.F, J. Steprans, 2008)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$.

・ロン ・回 と ・ ヨ と ・ ヨ と

Theorem (V.F, J. Steprans, 2008)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$.

Theorem (J. Brendle, 1998)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{a} = \kappa^+$.

Theorem (V.F, J. Steprans, 2008)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$.

Theorem (J. Brendle, 1998)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{a} = \kappa^+$.

Remark

It is relatively consistent that $\mathfrak{b} = \kappa < \mathfrak{s} = \mathfrak{a} = \kappa^+$.

Mimicking the almost bounding property Generic Analogue Large spread

Theorem (V.F., J. Steprans, 2008)

(CH) There is countably closed, \aleph_2 -cc forcing notion \mathbb{P} such that in $V^{\mathbb{P}\times\mathbb{C}(\omega_2)}$ there is a centered family C with the property that Q(C) adds a real not split by $V^{\mathbb{C}(\omega_2)} \cap [\omega]^{\omega}$ and preserves the unboundedness of all families of Cohen reals of size ω_1 .

This might be considered a first step towards the consistency of $\mathfrak{b} = \kappa < \mathfrak{s} = \lambda$ for κ, λ arbitrary regular uncountable cardinals.

Theorem (J. Brendle, V.F., 2009)

Let $\kappa < \lambda$ be regular uncountable cardinals. There is a ccc generic extension in which $\mathfrak{a} = \mathfrak{b} = \kappa < \mathfrak{s} = \lambda$.

Theorem (J. Brendle, V.F., 2009)

Let μ be a measurable cardinal, $\mu < \kappa < \lambda$, κ and λ regular. There is a ccc generic extension in which $\mathfrak{b} = \kappa < \mathfrak{s} = \mathfrak{a} = \lambda$.

How about three distinct cardinals?

$$\blacktriangleright \ \mathfrak{b} = \kappa < \mathfrak{s} = \lambda < \mathfrak{a} = \nu$$

$$\blacktriangleright \ \mathfrak{b} = \kappa < \mathfrak{a} = \lambda < \mathfrak{s} = \nu$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- J.Brendle *Mob families and mad families,* Arch. Math. Logic, vol. 37, 1998.
- J. Brendle and V. Fischer *Mad families, splitting families and large continuum,* in preparation.
- V. Fischer *The consistency of arbitrarily large spread between the bounding and splitting numbers,* doctoral dissertation, York University, Canada, June 2008.
- V. Fischer and J. Steprāns *Further combinatorial properties of Cohen forcing,* RIMS Conference proceedings in Combinatorial and Descriptive Set Theory, Kyoto, 2008.
- V. Fischer and J. Steprāns *The consistency of* $\mathfrak{b} = \kappa < \mathfrak{s} = \kappa^+$, Fundamenta Mathematicae, vol. 201, 2008.
- S. Shelah *On cardinal invariants of the continuum,* Contemp. Math., vol. 31, Amer. Math. Soc., 1984.