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Bounding, Splitting and Almost Disjointness Numbers

Definition
A family H ⊆ ωω is unbounded, if there is no g ∈ ωω which
dominates all elements of H. The bounding number b is the
minimal cardinality of an unbounded family.

Definition
A family S ⊆ [ω]ω is splitting, if for every A ∈ [ω]ω there is B ∈ S
such that both A ∩ B and A ∩ Bc are infinite. The splitting
number s is the minimal cardinality of a splitting family.
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Bounding, Splitting and Almost Disjointness Numbers

Definition
A family A ⊆ [ω]ω is maximal almost disjoint if all distinct
elements of A have finite intersection and for every C ∈ [ω]ω there
is A ∈ A such that |A ∩ C | = ω. The maximal almost disjointness
number a is the minimal size of a maximal almost disjoint family.
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Bounding, Splitting and Almost Disjointness Numbers

The bounding number is less or equal the almost disjointness
number.

The bounding and the splitting numbers are independent.

I In 1985 J. Baumgartner and P. Dordal showed that s < b in
the Hechler model.

I In 1984 S. Shelah showed the consistency of b < s using
countable support iteration of proper forcing posets.
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Theorem (S. Shelah, 1984)

(CH) There is a proper forcing notion Q of size c which is almost
ωω-bounding and adds a real not split by the ground model reals.

Thus under an ℵ2-length iteration of Q one obtains the
consistency of b = ω1 < s = ω2. Similar arguments give the
consistency of b = ω1 < s = a = ω2, b = a = ω1 < s = ω2.
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Induced Logarithmic Measures
Sufficient Condition for High Values

Definition (S. Shelah, 1984)

Let P ⊆ [ω]<ω be an upwards closed family, which does not
contain singletons. Then P inductively induces a function
h : [ω]<ω → ω, called a logarithmic measure, as follows:

I h(e) > 0 if and only if e ∈ P
I for every ` ≥ 1 and e ∈ [ω]<ω, h(e) ≥ `+ 1 if and only if for

all e0, e1 such that e = e0 ∪ e1 either h(e0) ≥ ` or h(e1) ≥ `.
For every e ∈ [ω]<ω let h(e) = max{` : h(e) ≥ `}.
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Induced Logarithmic Measures
Sufficient Condition for High Values

Example

Let P = {a ∈ [ω]<ω : |a| ≥ 2} and let h be the induced logarithmic
measure. Then h(a) = min{j : |a| ≤ 2j}.

Sufficient condition for high values

Let h be an induced logarithmic measure. If for every finite
partition ω =

⋃
j∈n Aj , there is Aj which contains a positive set,

then for every k ∈ ω and finite partition ω =
⋃

j∈n Aj there is Aj

which contains a set of measure ≥ k.
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Induced Logarithmic Measures
Sufficient Condition for High Values

Definition (S. Shelah, 1984)

Let Q be the set of all pairs (u,T ) where u ∈ [ω]<ω and
T = 〈(si , hi )〉i∈ω is a sequence of logarithmic measures such that

1. max u < min s0

2. max si < min si+1 for all i ∈ ω
3. 〈hi (si ) : i ∈ ω〉 is unbounded.

The sequence T = 〈(si , hi ) : i ∈ ω〉 is called a pure condition. Let
int(T ) =

⋃
i∈ω si . Note that if (u,T ) ∈ Q, then (u, int(T )) is a

Mathias condition.
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Generic Analogue
Large spread

Definition (V.F., J. Steprāns, 2008)

Let C be a centered family of pure conditions. Then Q(C ) is the
suborder of Q of all (u,T ) such that ∃R ∈ C (R ≤ T ).

I Q(C ) is σ-centered.

I If C ⊆ Q(C ′), then C ′ is said to extend C .

I If T 6⊥ C and ω =
⋃

j∈n Aj , then ∃j ∈ n ∃R ≤ T (R 6⊥ C )
such that int(R) ⊆ Aj .
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Theorem (V.F., J. Steprāns, 2008)

Let κ be a regular uncountable cardinal, cov(M) = κ, H ⊆ ωω an
unbounded, directed family of size κ. Let C be a centered family,
|C | < κ and let ḟ be a good Q(C )-name for a real. Then there are
a centered family C ′ extending C, |C | = |C ′| and h ∈ H such that

Q(C ′′) ȟ 6≤∗ ḟ , for every C ′′ extending C ′.
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Theorem (V.F., J. Steprāns, 2008)

Let κ be a regular uncountable cardinal, cov(M) = κ = c, H ⊆ ωω
an unbounded directed family of size κ. Then there is a centered
family C , |C | = κ such that Q(C ) preserves the unboundedness of
H and adds a real not split by V ∩ [ω]ω.
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Proof
Let N = {ḟα}α<κ enumerate all Q(C ′) names for functions in ωω
where |C ′| < κ. Let A = {Aα+1}α<κ enumerate V ∩ [ω]ω. By
induction of length κ obtain a sequence 〈Cα : α < κ〉 such that
∀α < βCα ⊆ Q(Cβ), |Cα| < κ as follows:

I Begin with any T and C0 = {T\v : v ∈ [ω]<ω}
I If α is a limit, let Cα =

⋃
β<α Cβ

cont.
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If α = β + 1, let ġα be the name with least index in N\{ġγ+1}γ<β
which is a Q(Cβ)-name. Find Cα such that |Cα| = |Cβ| and

I If ġα is good, ∃hα ∈ H∀C ′′ extending Cα 
Q(C ′′) “ȟα 6<∗ ġα”

I If ġα is not good, then ġα is not a Q(Cα)-name

I ∃Tα ∈ Q(Cα)(int(Tα) ⊆ Aα or int(Tα) ⊆ Ac
α).

Then let C =
⋃
α<κ Cα.

cont.
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H is unbounded
If ḟ is a Q(C )-name, then ∃β ∈ κ such that ḟ is a good
Q(Cβ)-name and is the name with least index in N\{ġγ+1}γ<β
which is a Q(Cβ)-name. Then (H is unbounded)V Q(C)

.

∃ a real not split by the ground model reals

Let G be Q(C )-generic. If A ∈ V ∩ [ω]ω then ∃(u,T ) ∈ G such
that int(T ) ⊆ A or int(T ) ⊆ Ac . If UG =

⋃
{u : ∃T (u,T ) ∈ G},

then UG ⊆∗ int(T ) for all T such that ∃u(u,T ) ∈ G .

�
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Theorem (V.F, J. Steprāns, 2008)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc
generic extension in which b = κ < s = κ+.

Theorem (J. Brendle, 1998)

(GCH) Let κ be a regular uncountable cardinal. There is a ccc
generic extension in which b = κ < a = κ+.

Remark
It is relatively consistent that b = κ < s = a = κ+.
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Theorem (V.F., J. Steprāns, 2008)

(CH) There is countably closed, ℵ2-cc forcing notion P such that
in V P×C(ω2) there is a centered family C with the property that
Q(C ) adds a real not split by V C(ω2) ∩ [ω]ω and preserves the
unboundedness of all families of Cohen reals of size ω1.

This might be considered a first step towards the consistency of
b = κ < s = λ for κ, λ arbitrary regular uncountable cardinals.
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Theorem (J. Brendle, V.F., 2009)

Let κ < λ be regular uncountable cardinals. There is a ccc generic
extension in which a = b = κ < s = λ.

Theorem (J. Brendle, V.F., 2009)

Let µ be a measurable cardinal, µ < κ < λ, κ and λ regular.
There is a ccc generic extension in which b = κ < s = a = λ.

Vera Fischer Bounding, splitting and almost disjoint families



Cardinal Characteristics
Logarithmic Measures

Large Spread
Further Directions

How about three distinct cardinals?

I b = κ < s = λ < a = ν

I b = κ < a = λ < s = ν
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