On Constructive Models of Theories with Linear Rudin-Keisler Ordering

Alexander N. Gavryushkin gavryushkin@gmail.com Novosibirsk State University

A model \mathfrak{A} is said to be *decidable* if the set $\{\varphi(a_0,\ldots,a_n) \mid \mathfrak{A} \models \varphi(a_0,\ldots,a_n)\}$ is computable.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

A model \mathfrak{A} is said to be *decidable* if the set $\{\varphi(a_0,\ldots,a_n) \mid \mathfrak{A} \models \varphi(a_0,\ldots,a_n)\}$ is computable.

Definition

A model \mathfrak{A} is said to be *computable* if its domain, functions and predicates are uniformly computable.

《曰》 《聞》 《臣》 《臣》 三臣

A model \mathfrak{A} is said to be *decidable* if the set $\{\varphi(a_0,\ldots,a_n) \mid \mathfrak{A} \models \varphi(a_0,\ldots,a_n)\}$ is computable.

Definition

A model \mathfrak{A} is said to be *computable* if its domain, functions and predicates are uniformly computable.

Definition

A model \mathfrak{A} has computable presentation (is said to be **computably presentable**) if it is isomorphic to a computable model.

< □ > < 個 > < 注 > < 注 > ... 注

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Definition

A theory T is said to be **Ehrenfeucht theory** if $3 \leq \omega(T) < \omega$.

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Definition

A theory T is said to be **Ehrenfeucht theory** if $3 \leq \omega(T) < \omega$.

Definition

A model $\mathfrak{M} \models T$ is *quasi-prime* if it is prime over some realization of some type of the theory T.

《曰》 《聞》 《臣》 《臣》 三臣

Definition

A theory T is said to be **Ehrenfeucht theory** if $3 \leq \omega(T) < \omega$.

Definition

A model $\mathfrak{M} \models T$ is *quasi-prime* if it is prime over some realization of some type of the theory T.

Denote by \mathfrak{M}_p the set of all (isomorphic) prime models over realizations of p, i.e.

$$\mathfrak{M}_{p} = \{\mathfrak{M}_{\overline{a}} | \langle \mathfrak{M}_{\overline{a}}, \overline{a} \rangle \text{ is a prime model of } Th(\mathfrak{M}, \overline{a}),$$

where $\mathfrak{M} \models p(\overline{a})\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ =

A type *p* does not exceed a type *q* under the Rudin-Keisler pre-order (*p* is dominated by *q*) if $\mathfrak{M}_q \models p$. Written $p \leq_{RK} q$. $p \sim_{RK} q \Leftrightarrow (p \leq_{RK} q \& q \leq_{RK} p)$. $\mathfrak{M}_p \leq_{RK} \mathfrak{M}_q \Leftrightarrow p \leq_{RK} q$.

A type *p* does not exceed a type *q* under the Rudin-Keisler pre-order (*p* is dominated by *q*) if $\mathfrak{M}_q \models p$. Written $p \leq_{RK} q$. $p \sim_{RK} q \Leftrightarrow (p \leq_{RK} q \& q \leq_{RK} p)$. $\mathfrak{M}_p \leq_{RK} \mathfrak{M}_q \Leftrightarrow p \leq_{RK} q$.

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

 $\mathfrak{M}_q \models p \Leftrightarrow \mathfrak{M}_p \preceq \mathfrak{M}_q.$

A type *p* does not exceed a type *q* under the Rudin-Keisler pre-order (*p* is dominated by *q*) if $\mathfrak{M}_q \models p$. Written $p \leq_{RK} q$. $p \sim_{RK} q \Leftrightarrow (p \leq_{RK} q \& q \leq_{RK} p)$. $\mathfrak{M}_p \leq_{RK} \mathfrak{M}_q \Leftrightarrow p \leq_{RK} q$.

$$\mathfrak{M}_q \models p \Leftrightarrow \mathfrak{M}_p \preceq \mathfrak{M}_q.$$

Denote by S(T) the set of all types (over \emptyset) consistent with the theory T.

▲□▶ ▲舂▶ ▲恵▶ ▲恵▶ ― 恵

A type *p* does not exceed a type *q* under the Rudin-Keisler pre-order (*p* is dominated by *q*) if $\mathfrak{M}_q \models p$. Written $p \leq_{RK} q$. $p \sim_{RK} q \Leftrightarrow (p \leq_{RK} q \& q \leq_{RK} p)$. $\mathfrak{M}_p \leq_{RK} \mathfrak{M}_q \Leftrightarrow p \leq_{RK} q$.

$$\mathfrak{M}_q \models p \Leftrightarrow \mathfrak{M}_p \preceq \mathfrak{M}_q.$$

Denote by S(T) the set of all types (over \emptyset) consistent with the theory T.

Denote by RK(T) the set of all types of isomorphism of \mathfrak{M}_p , throughout all $p \in S(T)$. This set is pre-ordered by the relation \leq_{RK} .

A type p of a theory T is said to be **powerful** in the theory T if every model \mathfrak{M} of T, realizing p, also realizes every type from S(T).

《曰》 《聞》 《臣》 《臣》 三臣

A type p of a theory T is said to be **powerful** in the theory T if every model \mathfrak{M} of T, realizing p, also realizes every type from S(T).

Definition

A model sequence $\mathfrak{M}_0 \preceq \mathfrak{M}_1 \preceq \ldots$ is said to be *elementary chain* over a type p if $\mathfrak{M}_n \cong \mathfrak{M}_{p_i}$ for every $n \in \omega$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

A type p of a theory T is said to be **powerful** in the theory T if every model \mathfrak{M} of T, realizing p, also realizes every type from S(T).

Definition

A model sequence $\mathfrak{M}_0 \preceq \mathfrak{M}_1 \preceq \ldots$ is said to be *elementary chain* over a type p if $\mathfrak{M}_n \cong \mathfrak{M}_{p_1}$ for every $n \in \omega$.

Definition

A model \mathfrak{M} is said to be *limit over a type* p if $\mathfrak{M} = \bigcup_{n \in \omega} \mathfrak{M}_n$, for some elementary chain $(\mathfrak{M}_n)_{n \in \omega}$ over p, and $\mathfrak{M} \ncong \mathfrak{M}_p$.

Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > = □

Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.

Consider $\widetilde{M} \in RK(T) / \sim_{RK}$. Let $\widetilde{M} = \{\mathfrak{M}_{p_0}, \ldots, \mathfrak{M}_{p_n}\}$. Denote by $IL(\widetilde{M})$ the number of two by two non-isomorphic models each of which is limit over some type p_i .

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.

Consider $\widetilde{M} \in RK(T) / \sim_{RK}$. Let $\widetilde{M} = \{\mathfrak{M}_{p_0}, \ldots, \mathfrak{M}_{p_n}\}$. Denote by $IL(\widetilde{M})$ the number of two by two non-isomorphic models each of which is limit over some type p_i .

Theorem (S. Sudoplatov)

The following conditions are equivalent:

1)
$$\omega(T) < \omega;$$

≥
$$|S(T)| = \omega$$
, $|RK(T)| < \omega$, $IL(\widetilde{M}) < \omega$, for any $\widetilde{M} \in RK(T) / \sim_{RK}$.

Let $\langle X; \leqslant \rangle$ is finite pre-ordered set with the least element x_0 and the greatest class \widetilde{x}_n in ordered factor-set $\langle X; \leqslant \rangle/\sim$ (where $x \sim y \Leftrightarrow x \leqslant y$ and $y \leqslant x$), $\widetilde{x}_0 \neq \widetilde{x}_n$. Let $f: X/\sim \to \omega$ is a function, satisfying next properties $f(\widetilde{x}_0) = 0$, $f(\widetilde{x}_n) > 0$, $f(\widetilde{y}) > 0$, when $|\widetilde{y}| > 1$. The pair (X, f) is said to be *e-parameters*. At that, the set X is said to be *the first e-parameter* and the function f *the second e-parameter*.

< □ > < 個 > < 注 > < 注 > ... 注

Let $\langle X; \leqslant \rangle$ is finite pre-ordered set with the least element x_0 and the greatest class \widetilde{x}_n in ordered factor-set $\langle X; \leqslant \rangle/\sim$ (where $x \sim y \Leftrightarrow x \leqslant y$ and $y \leqslant x$), $\widetilde{x}_0 \neq \widetilde{x}_n$. Let $f: X/\sim \to \omega$ is a function, satisfying next properties $f(\widetilde{x}_0) = 0$, $f(\widetilde{x}_n) > 0$, $f(\widetilde{y}) > 0$, when $|\widetilde{y}| > 1$. The pair (X, f) is said to be *e-parameters*. At that, the set X is said to be *the first e-parameter* and the function f *the second e-parameter*.

Definition

A theory T is said to be **Ehrenfeucht theory with e-parameters** (X, f) if there exists an isomorphism $\varphi : X \to RK(T)$ and for any $\tilde{x} \in X/\sim$, an equality $IL(\varphi(\tilde{x})) = f(\tilde{x})$ holds.

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Let T be an Ehrenfeucht theory with e-parameters (X, f).

Let T be an Ehrenfeucht theory with e-parameters (X, f).

Definition

Spectrum of decidable models of Ehrenfeucht theory SDM(T) is a pair (Y, g), where $Y = \{x \in X \mid \text{element } x \text{ corresponds to a decidable model of the theory } T\}$ (corresponds — in terms of isomorphism φ form previous definition); $\delta f = \delta g$ (δ is domain of a function), $(g(x) = m \Leftrightarrow$ there exist exactly m decidable limit non-isomorphic models of T over the model, corresponding to x).

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Let T be an Ehrenfeucht theory with e-parameters (X, f).

Definition

Spectrum of decidable models of Ehrenfeucht theory SDM(T) is a pair (Y, g), where $Y = \{x \in X \mid \text{element } x \text{ corresponds to a decidable model of the theory } T\}$ (corresponds — in terms of isomorphism φ form previous definition); $\delta f = \delta g$ (δ is domain of a function), $(g(x) = m \Leftrightarrow$ there exist exactly m decidable limit non-isomorphic models of T over the model, corresponding to x).

Definition

Spectrum of computable models of Ehrenfeucht theory $\mathbb{SCM}(T)$ is a pair (Y, g), where $Y = \{x \in X \mid \text{element } x \text{ corresponds to a computable model of the theory } T\}$; $\delta f = \delta g$, $(g(x) = m \Leftrightarrow \text{there exist exactly } m \text{ computable limit non-isomorphic models of } T \text{ over the model, corresponding to } x).$

Problem

Describe sets SDM(T) and SCM(T) for arbitrary Ehrenfeucht theory T.

(日) (월) (원) (원) (원) (원)

Denote by L_n a linear ordered set, composed of n + 1 elements: $\{x_0 < x_1 < \ldots < x_n\}.$

Denote by L_n a linear ordered set, composed of n + 1 elements: $\{x_0 < x_1 < \ldots < x_n\}$.

Theorem

Let $1 \leq n \in \omega$. There exists hereditary decidable Ehrenfeucht theory T_n for which $RK(T_n) \cong L_n$ holds.

《曰》 《聞》 《臣》 《臣》 三臣

Denote by L_n a linear ordered set, composed of n + 1 elements: $\{x_0 < x_1 < \ldots < x_n\}$.

Theorem

Let $1 \leq n \in \omega$. There exists hereditary decidable Ehrenfeucht theory T_n for which $RK(T_n) \cong L_n$ holds.

Theorem

Let $1 \le n \in \omega$, $0 \le k \le n$. There exists Ehrenfeucht theory T_n for which $RK(T_n) \cong L_n$ holds. At that, models, corresponding to elements x_0, x_1, \ldots, x_k from L_n , are decidable, models, corresponding to elements x_{k+1}, \ldots, x_n , have no computable presentations.

< □ > < (四 > < (回 >) < (回 >) < (回 >)) 三 回

Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , such that $RK(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m .

Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , such that $RK(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m .

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , RK $(T_m) \cong L_m$, such that a model $\mathfrak{M} \models T_m$ have computable presentation if and only if \mathfrak{M} is limit model over powerful type of the theory T_m .

《曰》 《圖》 《圖》 《圖》

Theorem

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , such that $RK(T_m) \cong L_m$, every quasi-prime model of T_m is not computably presentable and there exists computably presentable model of T_m .

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , RK $(T_m) \cong L_m$, such that a model $\mathfrak{M} \models T_m$ have computable presentation if and only if \mathfrak{M} is limit model over powerful type of the theory T_m .

Corollary

For all $1 \leq m \in \omega$, there exists Ehrenfeucht theory T_m , RK $(T_m) \cong L_m$, such that every quasi-prime model of T_m have no computable presentation, every limit model of T_m , have computable presentation.

Thank you for attention!

(日) (월) (일) (일) (일) (일)