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Let T be a countable complete theory. Denote by ω(T ) the

number of countable models of T up to isomorphism.
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Lemma (S. Sudoplatov)

Every model of an Ehrenfeucht theory either quasi-prime or limit.

Consider M̃ ∈ RK (T )/ ∼RK . Let M̃ = {Mp0 , . . . ,Mpn}. Denote
by IL(M̃) the number of two by two non-isomorphic models each of

which is limit over some type pi .

Theorem (S. Sudoplatov)

The following conditions are equivalent:

1 ω(T ) < ω;

2 |S(T )| = ω, |RK (T )| < ω, IL(M̃) < ω, for any
M̃ ∈ RK (T )/ ∼RK .
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Problem

Describe sets SDM(T ) and SCM(T ) for arbitrary Ehrenfeucht

theory T .
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Thank you

for attention!


