On the form of witness terms

Stefan Hetzl
INRIA Saclay - Île-de-France
École Polytechnique

Logic Colloquium 2009
July 31, 2009

Motivation

- Cut-elimination one of the central tools of proof theory
- Cut-elimination applied to mathematical proofs
- non-deterministic \Rightarrow mathematically different results
- Characterization of possible results ?
- Methods: witness terms

Herbrand's theorem

- Herbrand's Thm. If $\exists \bar{x} A(\bar{x})$ is valid, then there are tuples of terms \bar{t}_{i} s.t. $\bigvee_{i=1}^{k} A\left(\bar{t}_{i}\right)$ is a tautology.
- Algebraic structure of the set of Herbrand-disjunctions of $\exists \bar{x} A(\bar{x})$:

$$
\left\{\left\{A\left(\bar{t}_{i}\right) \mid i \in I\right\} \mid I \subseteq \mathbb{N}, \bigvee_{i \in I} A\left(\bar{t}_{i}\right) \text { tautology }\right\}
$$

Least upper bound ?

- $\mathrm{H}(\pi)$... quantifier-free instances of end-formula
- Prop. If $\pi \rightarrow \pi^{*}$ then there is a set Σ of substiutions s.t. $\mathrm{H}\left(\pi^{*}\right)=\mathrm{H}(\pi) \Sigma$.

Example

$$
\frac{\frac{\vdash A(a), A(b)}{\vdash \exists x A(x), A(b)} \exists_{r}}{\frac{\vdash \exists x A(x), \exists x A(x)}{\vdash \exists x A(x)} \exists_{r}} \frac{\frac{A(\alpha) \vdash B(f(\alpha))}{A(\alpha) \vdash \exists x B(x)} \exists_{r} \quad \frac{A(\alpha), B(\beta) \vdash C(g(\alpha, \beta))}{A(\alpha), B(\beta) \vdash \exists x C(x)} \exists_{r}}{\frac{A(\alpha) \vdash \exists x C(x)}{\exists x A(x) \vdash \exists x C(x)} \exists_{l}} \text { cut } \mathrm{g}_{1}, \text { cut }
$$

$\mathrm{H}(\pi)=\{C(g(\alpha, \beta))\}$

Base substitions

Define set of base substitutions $\mathrm{B}(\pi)$ of π.
Example:

$$
\begin{aligned}
& \frac{\stackrel{\vdash A(a), A(b)}{\vdash \exists x A(x), A(b)} \exists_{r}}{\frac{\vdash \exists x A(x), \exists x A(x)}{\vdash \exists x A(x)}} \exists_{r} \\
& \mathrm{c}_{r}
\end{aligned} \frac{\frac{A(\alpha) \vdash B(f(\alpha))}{A(\alpha) \vdash \exists x B(x)} \exists_{r} \quad \frac{A(\alpha), B(\beta) \vdash C(g(\alpha, \beta))}{\frac{A(\alpha), B(\beta) \vdash \exists x C(x)}{A(\alpha), \exists x B(x) \vdash \exists x C(x)}} \exists_{r}}{\exists_{1}} \mathrm{c}_{\mathrm{l}} \text {, cut }
$$

Regular Tree Grammars

- Def. A regular tree grammar is a quadruple $G=(\alpha, N, F, R)$
- axiom α
- set N of non-terminal symbols with $\alpha \in N$
- set F of terminal symbols with $F \cap N=\varnothing$
- set R of production rules $\beta \rightarrow t$ where

$$
\beta \in N \text { and } t \in \mathrm{~T}(F \cup N)
$$

- $s \rightarrow{ }_{G} t$ if $s=r[\beta]$ and $t=r[u]$ and $\beta \rightarrow u \in R$
- $\mathrm{L}(G):=\{t \in \mathrm{~T}(F) \mid \alpha \rightarrow G t\}$ where
$\rightarrow G$ reflexive and transitive closure of $\rightarrow G$

The Upper Bound

- Def. For a proof π of a $\Sigma_{1 \text {-sentence define }}$ $\mathrm{G}(\pi):=(\varphi, N, F, R)$ where $N=\left\{\varphi, \alpha_{1}, \ldots, \alpha_{n}\right\}, F=\Sigma(\pi)$ and $R=\{\varphi \rightarrow A \mid A \in \mathrm{H}(\pi)\} \cup\{\alpha \rightarrow t \mid[\alpha \leftarrow t] \in \mathrm{B}(\pi)\}$.
- Theorem. Let π be a proof of a Σ_{1}-sentence. Let π^{*} be a cut-free proof with $\pi \rightarrow \pi^{*}$. Then $\mathrm{H}\left(\pi^{*}\right) \subseteq \mathrm{L}(\mathrm{G}(\pi))$.
- Upper bound, but not least upper bound.

Cut-Elimination in PA

- Thm. If π is a PA-proof of a Σ_{1}-sentence $\exists x F(x)$, then $\pi \rightarrow \pi^{*}$ where π^{*} is cut- and induction-free.
- Def. For a proof π of $\exists x F(x)$, write $W(\pi)$ for the terms inserted for x in π.
- If π^{*} is a cut- and induction-free proof of $\exists x F(x)$ and $\mathrm{W}\left(\pi^{*}\right)=\left\{t_{1}, \ldots, t_{n}\right\}$ then PA $\vdash F\left(t_{1}\right) \vee \ldots \vee F\left(t_{n}\right)$.
- Adapt base substitutions to

$$
\frac{\Gamma \vdash \Delta, F(0) \quad F(y), \Pi \vdash \Lambda, F\left(y^{\prime}\right)}{\Gamma, \Pi \vdash \Delta, \Lambda, F(t)} \text { ind }
$$

The Upper Bound in PA

- Theorem. Let π be a PA-proof of a Σ_{1}-sentence. Let π^{*} be a cut- and induction-free proof with $\pi \rightarrow \pi^{*}$. Then $\mathrm{W}\left(\pi^{*}\right) \subseteq \mathrm{L}(\mathrm{G}(\pi))$.
- uniformity: $\pi: \forall x \exists y F(x, y), \pi(\alpha): \exists y F(\alpha, y)$

$$
\mathrm{G}(\pi(\bar{n}))=\mathrm{G}(\pi(\alpha))[\alpha \leftarrow \bar{n}]
$$

Example (1/3)

- For all $m \geqslant 2$ and $n \geqslant 1$ there is a number between n and $m^{2} \cdot n$ which can be written as a sum of two squares.
- $S(\bar{n})$ true iff there are $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1}^{2}+n_{2}^{2}=n$ $A(m, n, k):=n<k \wedge k \leqslant m^{2} \cdot n \wedge S(k)$
- π :=

$$
\frac{\vdash \overline{1}<\overline{2} \wedge \overline{2} \leqslant\left(\mu^{\prime \prime}\right)^{2} \cdot \overline{1} \wedge S(\overline{2})}{\frac{\vdash \exists k A\left(\mu^{\prime \prime}, \overline{1}, k\right)}{} \exists_{\mathrm{r}} \frac{(\text { IS })}{\exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, k\right) \vdash \exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, k\right)}} \exists_{\text {I }} \text { in }
$$

Example (2/3)

- IS :=

$$
\frac{\frac{\nu_{0}^{\prime \prime}<\kappa, A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, \kappa\right) \vdash A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, \kappa\right)}{\nu_{0}^{\prime \prime}<\kappa, A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, \kappa\right) \vdash \exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, k\right)} \exists_{r}}{\overbrace{\mathrm{~A}} \neg^{\prime \prime}, \nu_{0}^{\prime}, \kappa) \vdash \exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, k\right), \neg \nu_{0}^{\prime \prime}<\kappa}{ }^{A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, \kappa\right) \vdash \exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, k\right)} \mathrm{cut}
$$

- $\mathrm{IS}^{\prime}:=$

$$
\frac{\left(\mathrm{IS}_{1}^{\prime}\right)}{\frac{\neg \nu_{0}^{\prime \prime}<\kappa, A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, \kappa\right) \vdash A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime},\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa\right)}{\neg \nu_{0}^{\prime \prime}<\kappa, A\left(\mu^{\prime \prime}, \nu_{0}^{\prime}, \kappa\right) \vdash \exists k A\left(\mu^{\prime \prime}, \nu_{0}^{\prime \prime}, k\right)} \wedge_{\mathrm{r}}^{*}, \mathrm{w}_{\mathrm{l}}, \wedge_{\mathrm{r}}^{*}}
$$

- IS_{1}^{\prime} proves $\nu_{0}^{\prime}<\kappa \vdash \nu_{0}^{\prime \prime}<\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa$
- IS_{2}^{\prime} proves $\neg \nu_{0}^{\prime \prime}<\kappa \vdash\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa \leqslant\left(\mu^{\prime \prime}\right)^{2} \cdot \nu_{0}^{\prime \prime}$
- IS_{3}^{\prime} proves $S(\kappa) \vdash S\left(\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa\right)$

Example (3/3)

- $\mathrm{G}(\pi(\mu, \nu))=(\tau, N, F, R)$ with $\tau, \kappa, \nu_{0} \in N$ and $R=$

$$
\begin{array}{lll}
\tau \rightarrow \overline{2} & \kappa \rightarrow \overline{2} & \nu_{0} \rightarrow 0 \\
\tau \rightarrow \kappa & \kappa \rightarrow \kappa & \nu_{0} \rightarrow \nu_{0}^{\prime} \\
\tau \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa & \kappa \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa & \mathrm{R}^{*}
\end{array}
$$

Example (3/3)

- $\mathrm{G}(\pi(\mu, \nu))=(\tau, N, F, R)$ with $\tau, \kappa, \nu_{0} \in N$ and $R=$

$$
\begin{array}{ll}
\tau \rightarrow \overline{2} & \kappa \rightarrow \overline{2} \\
\tau \rightarrow \kappa & \kappa \rightarrow \kappa \\
\tau \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa & \kappa \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \kappa
\end{array}
$$

Example (3/3)

- $\mathrm{G}(\pi(\mu, \nu))=(\tau, N, F, R)$ with $\tau, \kappa, \nu_{0} \in N$ and $R=$

$$
\begin{aligned}
& \tau \rightarrow \overline{2} \\
& \tau \rightarrow \tau \\
& \tau \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \tau
\end{aligned}
$$

Example (3/3)

- $\mathrm{G}(\pi(\mu, \nu))=(\tau, N, F, R)$ with $\tau, \kappa, \nu_{0} \in N$ and $R=$

$$
\begin{aligned}
& \tau \rightarrow \overline{2} \\
& \tau \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \tau
\end{aligned}
$$

Example (3/3)

- $\mathrm{G}(\pi(\mu, \nu))=(\tau, N, F, R)$ with $\tau, \kappa, \nu_{0} \in N$ and $R=$

$$
\begin{aligned}
& \tau \rightarrow \overline{2} \\
& \tau \rightarrow\left(\mu^{\prime \prime}\right)^{2} \cdot \tau
\end{aligned}
$$

- Every witness is of the form $2 \cdot m^{2 i}$
- No odd sums of two squares
- No Pythagorean triples
- The argument
between n and $2 \cdot n$ there is a power of two
cannot be obtained (for $m \geqslant 3$).

Conclusion

- Upper bound on reachable witness terms
- Characterized by regular tree grammar
- First-order logic, Peano-arithmetic

Future Work:

- Characterization of the least upper bound
- Computational use

