Picard's little theorem and Weak-Riemann mapping theorem in weak second order arithmetic.

Yoshihiro Horihata and Keita Yokoyama

Tohoku university

Today's topics

- 1. Background of analysis and complex analysis within second order arithmetic.
- 2. Picard's little theorem within weak second order arithmetic.

- Theorem (Yokoyama, 2007) -

The following assertions are equivalent over RCA₀.

- 1. WKL₀.
- 2. Cauchy's integral theorem.

- Theorem (Yokoyama, 2007)

The following assertions are equivalent over $\mathsf{WKL}_0.$

- 1. ACA₀.
- 2. Riemann mapping theorem.

We can define singularities in RCA₀:

Definition

 $f: D = \{z \mid 0 \le R_1 < |z-a| < R_2\} \rightarrow \mathbb{C}$: holomorphic. Then, *a* is said to be an *isolated essential singularity* if there exists $\{a_n\}_{n\in\mathbb{Z}}$ such that $f(z) = \sum_{n\in\mathbb{Z}} a_n(z-a)^n$ for all $z \in D$ and $\forall m \in \mathbb{N} \exists k \ge m (a_{-k} \ne 0)$. - Well known theorem

The following assertions are equivalent over RCA_0 .

1. WKL₀.

2. Every continuous function is integrable.

- Theorem

The following assertions are equivalent over RCA_0 .

1. WWKL₀.

2. Every bounded continuous function is integrable. - Theorem

WWKL₀ proves Riemann's theorem on removable singularities:

 $D := \{z \mid 0 < |z - a| < r\},\$ $f : D \to \mathbb{C} : \text{holomorphic.}$ If there exists r' > 0 such that r' < r and fis bounded on $\{z \mid 0 < |z - a| < r'\},$ then there exists a holomorphic function $\tilde{f} : D \cup \{a\} \to \mathbb{C}$ such that $\tilde{f}(z) = f(z)$ for all $z \in D$. - Theorem WWKL₀ proves *Casorati/Weierstraß theorem*: $D := \{z \mid 0 < |z - a| < r\},$ $f : D \to \mathbb{C}$: holomorphic, a is an isolated essential singularity. Then f(D) is dense in \mathbb{C} .

The precise version of this theorem is the next statement.

- 2. Picard's little theorem within weak SOA.
 - Picard's little theorem
 - $f: \mathbb{C} \to \mathbb{C}$: holomorphic.

If the range of *f* omits two points, then *f* is a constant function.

⇒Our question is which set existence axiom is needed to prove this theorem?

- 2. Picard's little theorem within weak SOA.
 - Picard's little theorem
 - $f: \mathbb{C} \to \mathbb{C}$: holomorphic.

If the range of *f* omits two points, then *f* is a constant function.

⇒Our question is which set existence axiom is needed to prove this theorem?

• In my master thesis, it was proved that this theorem is provable in ACA₀.

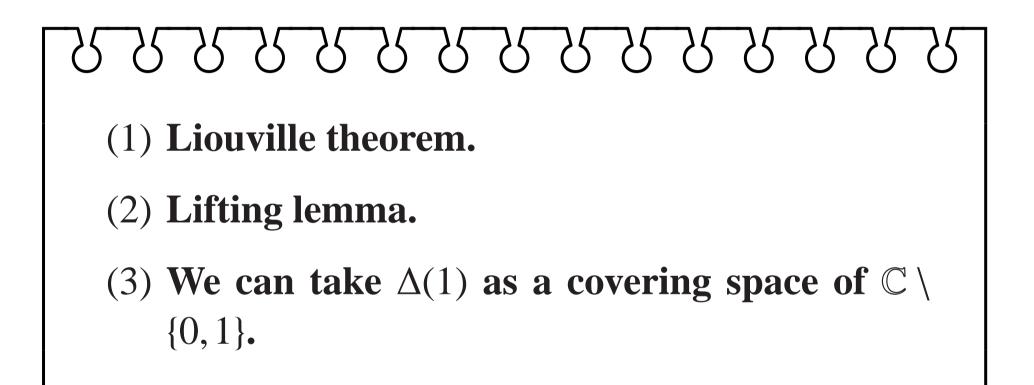
- 2. Picard's little theorem within weak SOA.
 - Picard's little theorem
 - $f: \mathbb{C} \to \mathbb{C}$: holomorphic.

If the range of *f* omits two points, then *f* is a constant function.

⇒Our question is which set existence axiom is needed to prove this theorem?

- In my master thesis, it was proved that this theorem is provable in ACA₀.
- But in this study, we got a better answer : we can prove that this theorem is rather provable in WKL₀.

In general, Picard's little theorem is proved by



Next, we see these theorems in SOA.

<u>333333333333333333333</u>

- (1) Liouville theorem. \cdots provable in WWKL₀.
- (2) Lifting lemma.
- (3) We can take $\Delta(1)$ as a covering space of $\mathbb{C} \setminus \{0,1\}$.

The statement of Lifting lemma is next: Lifting lemma

 $(X, D, \pi, U_{ij}, V_i, \pi_{ij})$: covering space, $D \subseteq \mathbb{C}$: open, $f: D_0 \to D$: continuous. Then, if D_0 is simply connected, then there exists a continuous function $\hat{f}: D_0 \to X$ such that $\pi \circ \hat{f} = f$. Moreover, \hat{f} is holomorphic if each of f and π_{ij}^{-1} is holomorphic.

We proved the following theorem:

- Theorem

The wollowing assertions are equivalent over RCA₀.

1. WKL₀.

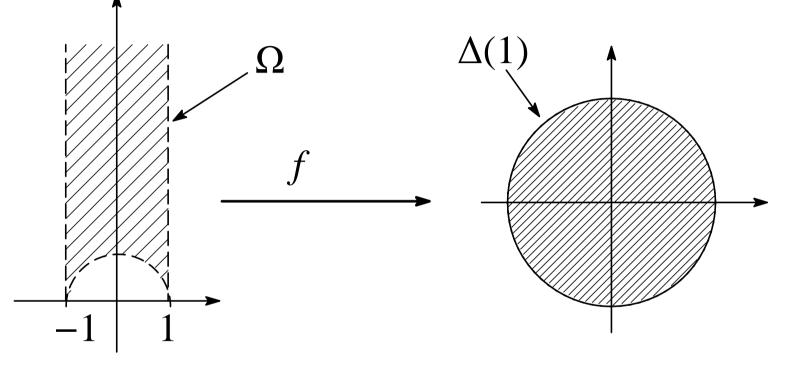
2. Lifting lemma.

- WKL₀ implies Heine/Borel theorem.
- $\neg \mathsf{WKL}_0$ implies $\exists f : \blacksquare \rightarrow \square :$ continuous (*retruction*).

- (1) Liouville theorem. \cdots provable in WWKL₀.
- (3) We can take $\Delta(1)$ as a covering space of $\mathbb{C} \setminus \{0,1\}$.

Next, we see (3).

The essence of the proof of (3) is to show the existence of the following biholomorphic function f:



To prove the existence of f, we only need a weak version of Riemann mapping theorm.

We prepare some definitions and lemmas for weak-Riemann mapping theorem Definition (semi-polygon)

A semi-polygon is a finite sequence of functions $\gamma = \langle \gamma_1, \dots, \gamma_n \rangle$ where $\gamma_i : [(i-1)/n, i/n] \rightarrow \mathbb{C} \ (1 \le i \le n)$ is a line or an arc of a circle, $\gamma_i(i/n) = \gamma_{i+1}(i/n)$ for all $1 \le i \le n$ and $\gamma_1(0) = \gamma_n(1)$. A semi-polygon γ is said to be *simple* if $\gamma(t) \ne \gamma(s)$ for all $0 \le t < s < 1$.

Lemma The following is provable in RCA_0 . **Let** γ **be a semi-polygon in** \mathbb{C} . **Thereby, there exist two open sets called** *exterior* **and** *interior* **of** γ **and a closed set called the** *image* **of** γ .

Note that Jordan curve theorem is equivalent to WKL_0 .

Definition (Effectively uniformly continuous)

 $f: D \to \mathbb{C}$: continuous, $D_0 \subseteq D$.

A modulus of uniform continuity on D_0 for f is a function h_{D_0} from \mathbb{N} to \mathbb{N} such that for all $n \in \mathbb{N}$,

$$\forall z, w \in D_0(|z-w| < 2^{-h_{D_0}(n)} \to |f(z) - f(w)| < 2^{-n+1}).$$

We say that f is *effectively uniformly continuous* on Dif D is simply connected and for every semi-polygon $\gamma : [0,1] \rightarrow D$ such that $Int(\gamma) \subseteq D$, we can find a modulus of uniform continuity on $Im(\gamma) \cup Int(\gamma)$. Next, we see the two technical lemmas for the proof of weak-Riemann mapping theorem.

- Lemma 1

The following is provable in RCA₀.

 $g: D \to D' \subseteq \Delta(1)$: effectively uniformly continuous holomorphic such that g(0) = 0. Then, if *D* contains $\Delta(r)$, then $|g'(0)| \leq 1/r$.

We can prove this easily by applying the RCA₀ version of Schwarz' lemma.

- Lemma 2 The following is provable in RCA₀. $g: D \rightarrow D' \subsetneq \Delta(1)$: effectively uniformly continuous biholomorphic such that g(0) = 0. Let $\alpha \in \Delta(1) \setminus D'$. Define ψ_{α} and η_{β} as follows:

$$\psi_{\alpha}(z) := \sqrt{(z-\alpha)/(1-\bar{\alpha}z)};$$

$$\eta_{\beta}(z) := (z-\beta)/(1-\bar{\beta}z), \text{ where } \beta := \psi_{\alpha}(0) = \sqrt{\alpha}.$$

Define holomorphic function $h: D \rightarrow h(D) \subseteq \Delta(1)$ **as**

$$h(z) = \eta_{\beta}(\psi_{\alpha}(g(z))).$$

Then, h(0) = 0 and $|h'(0)| > (1 + d^2/2)|g'(0)|$ where $d := |1 - \beta| = 1 - \sqrt{|\alpha|}$.

Now, we see the statemant of weak version of Riemann mapping theorem, which is, Riemann mapping theorem for simple semi-polygons.

This version of Riemann mapping theorem is sufficient to prove (3).

- Theorem (weak-Riemann mapping theorem)

The following is provable in RCA_0 .

- γ : simple semi-polygon on \mathbb{C} ,
- φ : linear transformation s.t. $0 \in \varphi(\operatorname{Int}(\gamma)) \subseteq \Delta(1)$, $D := \varphi(\operatorname{Int}(\gamma))$.

Then, *D* is conformally equivalent to $\Delta(1)$, *i.e.* there exists a biholomorphic function $f: D \rightarrow \Delta(1)$ such that f(0) = 0.

Moreover, f can be expanded into a homeomorphism $\overline{f}: \overline{D} \to \overline{\Delta(1)}$ and \overline{f} has a modulus of uniform continuity on \overline{D} .

<**Proof of weak-Riemann mapping theorem>**

Define $\psi_{\alpha}, \eta_{\beta}$ **as defined in Lemma** 2. $r_k := 1 - 2^{-2k}$ for all $k \in \mathbb{N}$.

We construct the following recusively:

$$\begin{cases} D_k \subseteq \Delta(1), \\ f_{kl} : D_k \to f_{kl}(D_k) : \text{effectively uni. conti. biholomorphic,} \\ \tilde{f}_k : D_k \to \tilde{f}_k(D_k) \supseteq \Delta(r_{k+1}) : \text{eff. uni. conti. biholomorphic.} \end{cases}$$

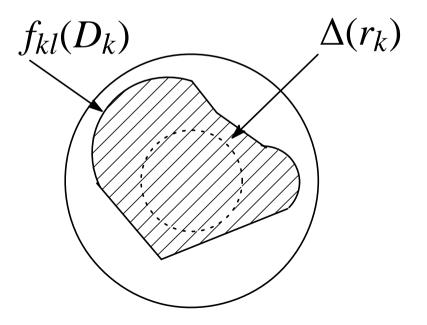
Let $D_0 := D$, $f_{00} := id_{D_0}$. Assume that f_{kl} and D_k are already defined.

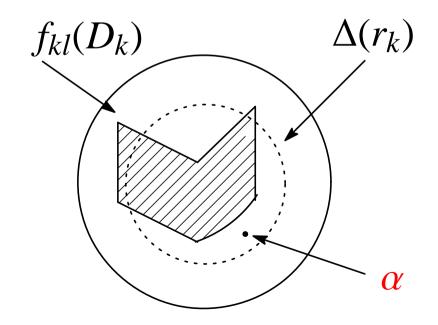
Here, let $\Omega_0(k, l), \Omega_1(k, l, \alpha)$ be Σ_1^0 formulas which represent the following:

$$\Omega_0(k,l) \equiv f_{kl}(D_k) \supseteq \Delta(r_k+1),$$

$$\Omega_1(k,l,\alpha) \equiv \alpha \in \mathbb{Q}^2 \cap \Delta(1) \setminus \overline{f_{kl}(D_k)} \wedge |\alpha| < r_{k+1} + 2^{-k-1}.$$

$$\Omega_0(k,l) \qquad \qquad \Omega_1(k,l,\alpha)$$





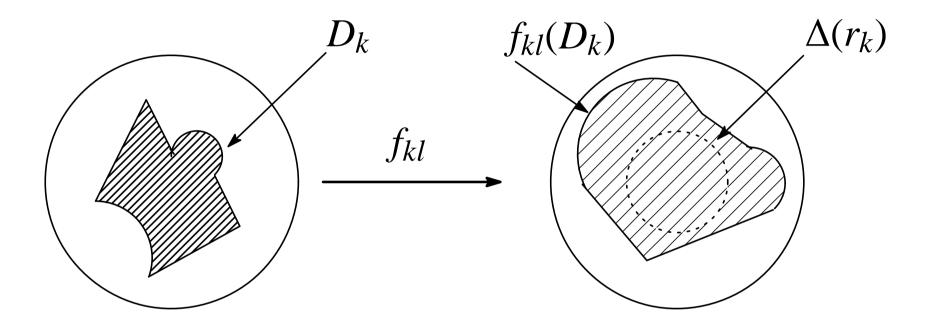
Here, let $\Omega_0(k,l), \Omega_1(k,l,\alpha)$ be Σ_1^0 formulas which represent the following:

$$\Omega_0(k,l) \equiv f_{kl}(D_k) \supseteq \Delta(r_k+1),$$

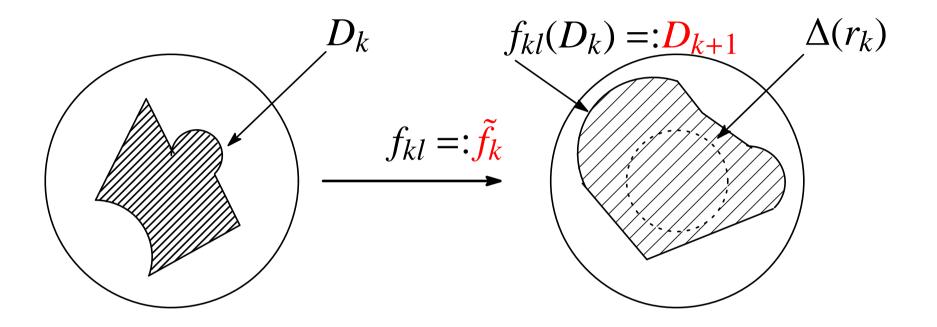
$$\Omega_1(k,l,\alpha) \equiv \alpha \in \mathbb{Q}^2 \cap \Delta(1) \setminus \overline{f_{kl}(D_k)} \wedge |\alpha| < r_{k+1} + 2^{-k-1}.$$

In fact, we can represent these formulas by Σ_1^0 , because ∂D_k is a piecewise analytic curve. Then either $\Omega_0(k,l)$ or $\exists \alpha \Omega_1(k,l,\alpha)$ holds. Write $\Omega_0(k,l) \equiv \exists p \Theta_0(k,l,p)$ and $\Omega_1(k,l,\alpha) \equiv \exists q \Theta_1(k,l,\alpha,q)$. Hence we can effectively choose $p \in \mathbb{N}$ or $(q,\alpha) \in \mathbb{N} \times \mathbb{Q}^2$ such that either $\Theta_0(k,l,p)$ or $\Theta_1(k,l,\alpha,q)$ holds.

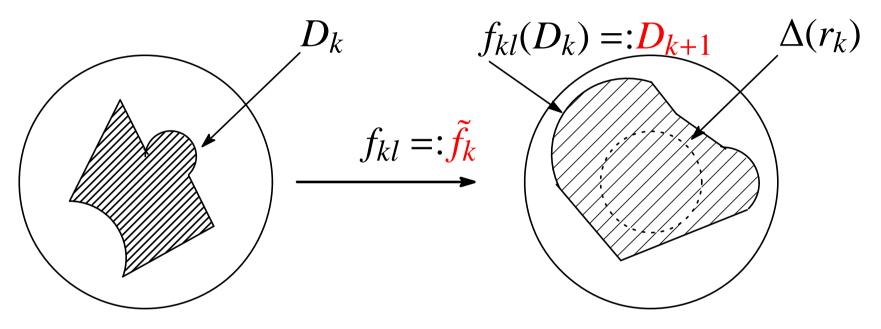
Case.1 $\Theta_0(k, l, p)$ holds for some $p \in \mathbb{N}$.



Case.1 $\Theta_0(k, l, p)$ holds for some $p \in \mathbb{N}$.

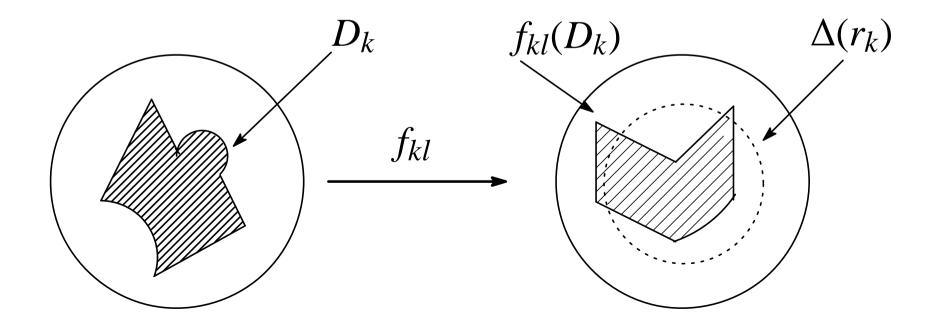


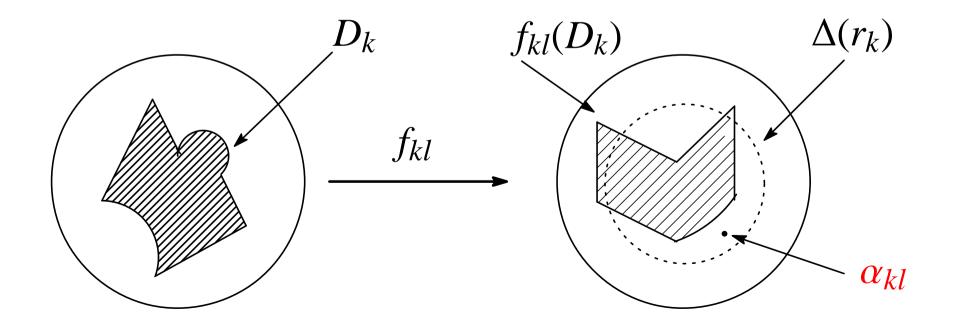
Case.1 $\Theta_0(k, l, p)$ holds for some $p \in \mathbb{N}$.

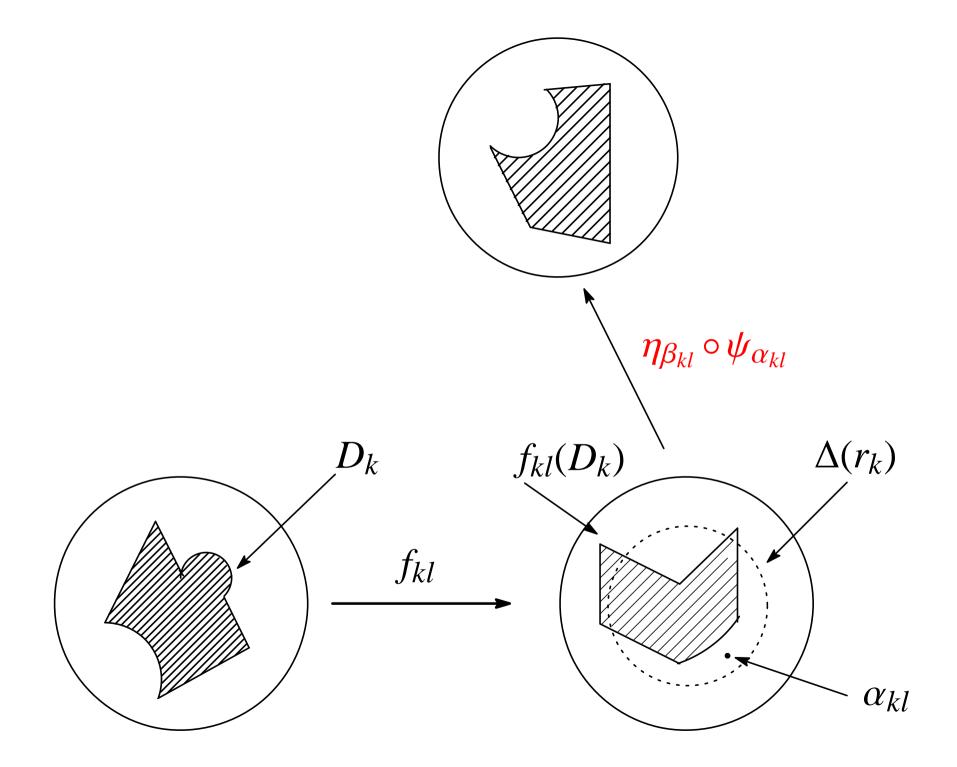


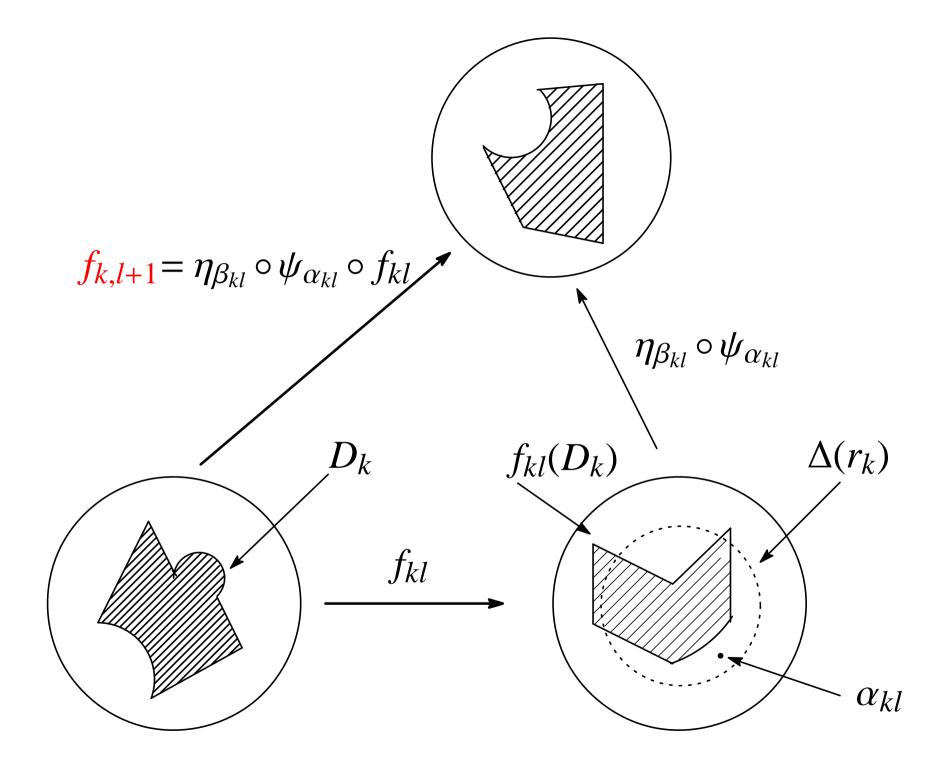
Put $f_{k+1,0} := id_{D_{k+1}}$, and go to the next stage.

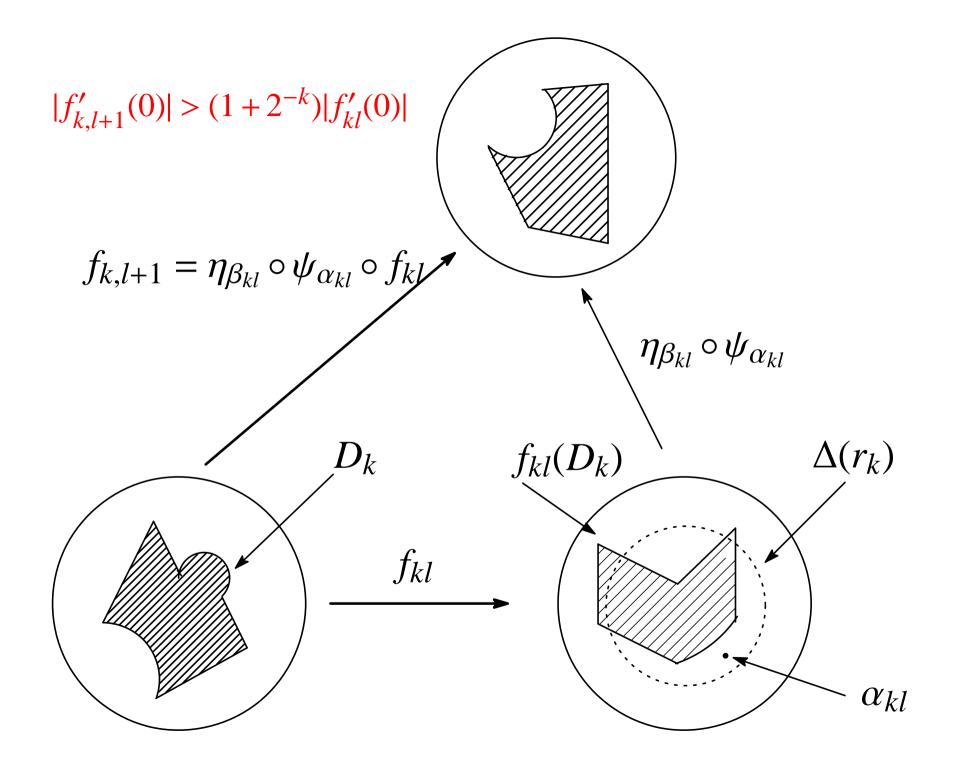
Case.2 $\Theta_1(k, l, \alpha, q)$ holds for some (q, α) .











Then, $D_k \supseteq \overline{\Delta(r_k)}$ for all $k \in \mathbb{N}$. By Lemma 1, $|f'_{kl}(0)| \leq 1/r_k$ holds. Then, $D_k \supseteq \overline{\Delta(r_k)}$ for all $k \in \mathbb{N}$. By Lemma 1, $|f'_{kl}(0)| \le 1/r_k$ holds. By Lemma 2, $|f'_{kl}(0)| > (1+2^{-k})^l$ holds. Then, $D_k \supseteq \overline{\Delta(r_k)}$ for all $k \in \mathbb{N}$. By Lemma 1, $|f'_{kl}(0)| \le 1/r_k$ holds. By Lemma 2, $|f'_{kl}(0)| > (1+2^{-k})^l$ holds. Therefore $\forall k \exists l \neg \exists \alpha \Omega_1(k, l, \alpha)$.

Hence, this construction is well-defined.

Then, $D_k \supseteq \Delta(r_k)$ for all $k \in \mathbb{N}$. By Lemma 1, $|f'_{kl}(0)| \le 1/r_k$ holds. By Lemma 2, $|f'_{kl}(0)| > (1 + 2^{-k})^l$ holds. Therefore $\forall k \exists l \neg \exists \alpha \Omega_1(k, l, \alpha)$. Hence, this construction is well-defined. Next, let $f_k := \tilde{f}_{k-1} \circ \cdots \circ \tilde{f}_0 : D \rightarrow D_k$. We can construct an effectively uniformly continuous biholomorphic function

$$f = \lim_{n \to \infty} f_n : D \to \Delta(1).$$

By using the modulus of uniform continuity for f on D, we can expand f into $\overline{f}: \overline{D} \to \overline{\Delta(1)}$. \Box

<u>33333333333333333333</u>

- (1) Liouville theorem. \cdots provable in WWKL₀.
- (2) Lifting lemma. $\cdots \cdot \cdot equivalent$ to WKL_0 .
- (3) We can take $\Delta(1)$ as a covering space of $\mathbb{C} \setminus \{0,1\}$ provable in RCA₀.

- Theorem

WKL₀ proves Picard's little theorem.

RCA₀ version of Picard's little theorem

Let $f(z) = \sum_{k \in \mathbb{N}} \alpha_k z^k$ be an analytic function from \mathbb{C} to \mathbb{C} .

If the range of *f* omits two points, then *f* is a constant function.

References

- [1] Y. Horihata and K. Yokoyama. Picard's little theorem in weak second order arithmetic. preprint.
- [2] S. G. Simpson. Subsystems of Second Order Arithmetic. Springer-Verlag, 1999.
- [3] K. Yokoyama. Complex analysis in subsystems of second order arithmetic. *Arch. Math. Logic*, Vol. 46, pp. 15–35, 2007.