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Today’s topics

1. Background of analysis and complex anal-
ysis within second order arithmetic.

2. Picard’s little theorem within weak second
order arithmetic.



Theorem (Yokoyama,2007)� �

The following assertions are equivalent overRCA0.

1. WKL0.

2. Cauchy’s integral theorem.
� �

Theorem (Yokoyama,2007)� �

The following assertions are equivalent overWKL0.

1. ACA0.

2. Riemann mapping theorem.
� �



We can define singularities inRCA0:
Definition� �

f : D = {z | 0≤ R1 < |z−a| < R2} → C: holomorphic.
Then, a is said to be anisolated essential singularityif
there exists{an}n∈Z such that f (z) =

∑
n∈Zan(z−a)n for

all z∈ D and ∀m∈ N∃k≥m(a−k , 0).
� �



Well known theorem� �

The following assertions are equivalent overRCA0.

1. WKL0.

2. Every continuous function is integrable.
� �

Theorem� �

The following assertions are equivalent overRCA0.

1. WWKL0.

2. Every bounded continuous function is inte-
grable.
� �



Theorem� �

WWKL0 proves Riemann’s theorem on removable sin-
gularities:

D := {z | 0< |z−a| < r},
f : D→ C : holomorphic.
If there exists r′ > 0 such that r′ < r and f
is bounded on{z | 0 < |z−a| < r′}, then there
exists a holomorphic function f̃ : D∪{a} → C

such that f̃ (z) = f (z) for all z∈ D.
� �



Theorem� �

WWKL0 provesCasorati/Weierstraß theorem:

D := {z | 0< |z−a| < r},
f : D→ C : holomorphic,
a is an isolated essential singularity.
Then f (D) is dense inC.
� �
The precise version of this theorem is the next statement.



2. Picard’s little theorem within weak SOA.
Picard’s little theorem� �

f : C→ C : holomorphic.
If the range of f omits two points, then f is a constant
function.
� �
⇒Our question iswhich set existence axiom is needed to
prove this theorem?
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• In my master thesis, it was proved that this theorem
is provable in ACA0.



2. Picard’s little theorem within weak SOA.
Picard’s little theorem� �

f : C→ C : holomorphic.
If the range of f omits two points, then f is a constant
function.
� �
⇒Our question is which set existence axiom is needed to
prove this theorem?

• In my master thesis, it was proved that this theorem
is provable in ACA0.

• But in this study, we got a better answer : we can
prove that this theorem is rather provable in WKL0.



In general, Picard’s little theorem is proved by

bababababababababababababababab

(1) Liouville theorem.

(2) Lifting lemma.

(3) We can take ∆(1) as a covering space ofC \
{0,1}.

Next, we see these theorems in SOA.



bababababababababababababababab

(1) Liouville theorem. · · · · · · provable in WWKL0.

(2) Lifting lemma.

(3) We can take ∆(1) as a covering space ofC \
{0,1}.



The statement of Lifting lemma is next:
Lifting lemma� �

(X,D,π,Ui j ,Vi ,πi j ) : covering space,
D ⊆ C : open,
f : D0→ D : continuous.
Then, if D0 is simply connected, then there exists a
continuous function f̂ : D0→ X such thatπ◦ f̂ = f .
Moreover, f̂ is holomorphic if each of f and πi j

−1 is
holomorphic.
� �



We proved the following theorem:
Theorem� �

The wollowing assertions are equivalent overRCA0.

1. WKL0.

2. Lifting lemma.
� �

• WKL0 implies Heine/Borel theorem.

• ¬WKL0 implies ∃ f : �→ � : continuous (retruction).



bababababababababababababababab

(1) Liouville theorem. · · · · · · provable in WWKL0.

(2) Lifting lemma. · · · · · · equivalent to WKL0.

(3) We can take ∆(1) as a covering space ofC \
{0,1}.

Next, we see(3).



The essence of the proof of(3) is to show the existence
of the following biholomorphic function f :

−1 1

Ω ∆(1)

f

To prove the existence off , we only need aweak ver-
sion ofRiemann mapping theorm.



We prepare some definitions and lemmas for weak-
Riemann mapping theorem

Definition (semi-polygon)� �

A semi-polygonis a finite sequence of functionsγ =

〈γ1, · · · ,γn〉 where γi : [(i −1)/n, i/n] → C (1 ≤ i ≤ n) is
a line or an arc of a circle, γi(i/n) = γi+1(i/n) for all
1≤ i ≤ n and γ1(0) = γn(1).
A semi-polygonγ is said to besimpleif γ(t) , γ(s) for
all 0≤ t < s< 1.
� �



Lemma� �

The following is provable in RCA0.
Let γ be a semi-polygon inC.
Thereby, there exist two open sets calledexteriorand
interior of γ and a closed set called theimageof γ.
� �
Note that Jordan curve theorem is equivalent toWKL0.



Definition (Effectively uniformly continuous)� �

f : D→ C : continuous,
D0 ⊆ D.
A modulus of uniform continuityon D0 for f is a func-
tion hD0 from N to N such that for all n ∈ N,

∀z,w ∈ D0(|z−w| < 2−hD0(n)→ | f (z)− f (w)| < 2−n+1).

We say that f is effectively uniformly continuouson D
if D is simply connected and for every semi-polygon
γ : [0,1]→ D such that Int(γ) ⊆ D, we can find a mod-
ulus of uniform continuity on Im(γ)∪ Int(γ).
� �



Next, we see the two technical lemmas for the proof of
weak-Riemann mapping theorem.

Lemma 1� �

The following is provable in RCA0.
g : D→ D′ ⊆ ∆(1) : effectively uniformly continuous
holomorphic such thatg(0) = 0.
Then, if D contains∆(r), then |g′(0)| ≤ 1/r.
� �
We can prove this easily by applying theRCA0 version
of Schwarz’ lemma.



Lemma 2� �

The following is provable in RCA0.
g : D→ D′ ( ∆(1) : effectively uniformly continuous
biholomorphic such that g(0) = 0.
Let α ∈ ∆(1)\D′. Defineψα and ηβ as follows:

ψα(z) :=
√

(z−α)/(1− ᾱz);

ηβ(z) := (z−β)/(1− β̄z), whereβ := ψα(0) =
√
α.

Define holomorphic functionh : D→ h(D) ⊆ ∆(1) as

h(z) = ηβ(ψα(g(z))).

Then, h(0) = 0 and |h′(0)| > (1+ d2/2)|g′(0)| where
d := |1−β| = 1− √|α|.
� �



Now, we see the statemant ofweak version ofRiemann
mapping theorem, which is, Riemann mapping theorem
for simple semi-polygons.
This version of Riemann mapping theorem is sufficient
to prove (3).



Theorem (weak-Riemann mapping theorem)� �

The following is provable in RCA0.
γ : simple semi-polygon onC,
ϕ : linear transformation s.t. 0 ∈ ϕ(Int(γ)) ⊆ ∆(1),
D := ϕ(Int(γ)).
Then, D is conformally equivalent to ∆(1), i.e. there
exists a biholomorphic function f : D → ∆(1) such
that f (0) = 0.
Moreover, f can be expanded into a homeomorphism
f̄ : D̄→ ∆(1) and f̄ has a modulus of uniform conti-
nuity on D̄.
� �



<Proof of weak-Riemann mapping theorem>

Defineψα,ηβ as defined in Lemma2.
rk := 1−2−2k for all k ∈ N.
We construct the following recusively:


Dk ⊆ ∆(1),

fkl : Dk→ fkl(Dk) : effectively uni. conti. biholomorphic,

f̃k : Dk→ f̃k(Dk) ⊇ ∆(rk+1) : eff. uni. conti. biholomorphic.

Let D0 := D, f00 := idD0. Assume that fkl and Dk are al-
ready defined.



Here, let Ω0(k, l),Ω1(k, l,α) be Σ0
1 formulas which rep-

resent the following:

Ω0(k, l) ≡ fkl(Dk) ⊇ ∆(rk +1),

Ω1(k, l,α) ≡ α ∈ Q2∩∆(1)\ fkl(Dk)∧ |α| < rk+1 +2−k−1.

∆(rk)fkl(Dk)

Ω0(k, l) Ω1(k, l,α)

∆(rk)fkl(Dk)

α



Here, let Ω0(k, l),Ω1(k, l,α) be Σ0
1 formulas which rep-

resent the following:

Ω0(k, l) ≡ fkl(Dk) ⊇ ∆(rk +1),

Ω1(k, l,α) ≡ α ∈ Q2∩∆(1)\ fkl(Dk)∧ |α| < rk+1 +2−k−1.

In fact, we can represent these formulas byΣ0
1, because

∂Dk is a piecewise analytic curve.
Then either Ω0(k, l) or ∃αΩ1(k, l,α) holds.
Write Ω0(k, l)≡∃pΘ0(k, l, p) andΩ1(k, l,α)≡∃qΘ1(k, l,α,q).
Hence we can effectively choosep ∈ N or (q,α) ∈ N×Q2

such that eitherΘ0(k, l, p) or Θ1(k, l,α,q) holds.



Case.1Θ0(k, l, p) holds for somep ∈ N.

Dk ∆(rk)fkl(Dk)

fkl



Case.1Θ0(k, l, p) holds for somep ∈ N.

Dk ∆(rk)fkl(Dk) =:Dk+1

fkl =: f̃k



Case.1Θ0(k, l, p) holds for somep ∈ N.

Dk ∆(rk)fkl(Dk) =:Dk+1

fkl =: f̃k

Put fk+1,0:= idDk+1, and go to the next stage.



Case.2Θ1(k, l,α,q) holds for some(q,α).



Dk ∆(rk)fkl(Dk)

fkl



Dk ∆(rk)fkl(Dk)

fkl

αkl



Dk ∆(rk)fkl(Dk)

fkl

αkl

ηβkl ◦ψαkl



Dk ∆(rk)fkl(Dk)

fkl

αkl

ηβkl ◦ψαkl

fk,l+1= ηβkl ◦ψαkl ◦ fkl



Dk ∆(rk)fkl(Dk)

fkl

αkl

ηβkl ◦ψαkl

fk,l+1 = ηβkl ◦ψαkl ◦ fkl

| f ′k,l+1(0)| > (1+2−k)| f ′kl(0)|



Then, Dk ⊇ ∆(rk) for all k ∈ N.
By Lemma 1, | f ′kl(0)| ≤ 1/rk holds.



Then, Dk ⊇ ∆(rk) for all k ∈ N.
By Lemma 1, | f ′kl(0)| ≤ 1/rk holds.
By Lemma 2, | f ′kl(0)| > (1+ 2−k)l holds.



Then, Dk ⊇ ∆(rk) for all k ∈ N.
By Lemma 1, | f ′kl(0)| ≤ 1/rk holds.
By Lemma 2, | f ′kl(0)| > (1+ 2−k)l holds.
Therefore ∀k∃l¬∃αΩ1(k, l,α).
Hence, this construction is well-defined.



Then, Dk ⊇ ∆(rk) for all k ∈ N.
By Lemma 1, | f ′kl(0)| ≤ 1/rk holds.
By Lemma 2, | f ′kl(0)| > (1+ 2−k)l holds.
Therefore ∀k∃l¬∃αΩ1(k, l,α).
Hence, this construction is well-defined.
Next, let fk := f̃k−1◦ · · · ◦ f̃0 : D→ Dk.
We can construct an effectively uniformly continuous bi-
holomorphic function

f = lim
n→∞ fn : D→ ∆(1).

By using the modulus of uniform continuity for f on D,
we can expandf into f̄ : D̄→ ∆(1). �



bababababababababababababababab

(1) Liouville theorem. · · · · · · provable in WWKL0.

(2) Lifting lemma. · · · · · · equivalent to WKL0.

(3) We can take ∆(1) as a covering space ofC \
{0,1}.· · · · · · provable in RCA0.

Theorem� �

WKL0 proves Picard’s little theorem.
� �



RCA0 version of Picard’s little theorem� �

Let f (z) =
∑

k∈Nαkzk be an analytic function from C to
C.
If the range of f omits two points, then f is a constant
function.
� �
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