Generic cuts in models of Peano arithmetic

Tin Lok Wong

University of Birmingham, United Kingdom

Joint work with Richard Kaye (Birmingham)

8 August, 2009

Preliminary definitions

▶ \mathscr{L}_A is the first-order language for arithmetic $\{0, 1, +, \times, <\}$.

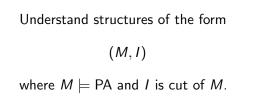
Preliminary definitions

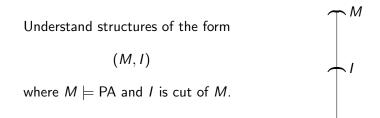
- \mathscr{L}_A is the first-order language for arithmetic $\{0, 1, +, \times, <\}$.
- Peano Arithmetic (PA) is the L_A-theory consisting of axioms for the non-negative part of discretely ordered rings

Preliminary definitions

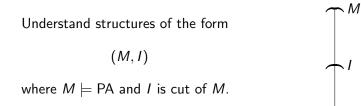
- \mathscr{L}_A is the first-order language for arithmetic $\{0, 1, +, \times, <\}$.
- Peano Arithmetic (PA) is the L_A-theory consisting of axioms for the non-negative part of discretely ordered rings and the *induction axiom*

 $\forall \bar{z} \big[\varphi(0, \bar{z}) \land \forall x \big(\varphi(x, \bar{z}) \to \varphi(x+1, \bar{z}) \big) \to \forall x \varphi(x, \bar{z}) \big].$ for each \mathscr{L}_{A} -formula $\varphi(x, \bar{z})$.

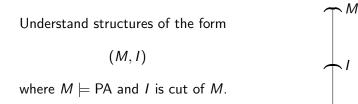




▶ How complicated is Th(M, I) in relation to Th(M)?



- How complicated is Th(M, I) in relation to Th(M)?
- How does Aut(M, I) sit inside Aut(M)?



- ▶ How complicated is Th(M, I) in relation to Th(M)?
- How does Aut(M, I) sit inside Aut(M)?
- ▶ Is (M, I) easier to study than $(I, SSy_I(M))$ where

 $SSy_I(M) = \{X \cap I : X \subseteq M \text{ is definable with parameters}\}$?

Definition

A model *M* of PA is *recursively saturated* if every recursive type over *M* is realized in *M*.

Definition

A model *M* of PA is *recursively saturated* if every recursive type over *M* is realized in *M*.

Every formula is a number via a Gödel numbering.

Definition

A model *M* of PA is *recursively saturated* if every recursive type over *M* is realized in *M*.

Fact

Countable recursively saturated models of PA are $\omega\text{-homogeneous}.$

Definition

A model *M* of PA is *recursively saturated* if every recursive type over *M* is realized in *M*.

Fact

Countable recursively saturated models of PA are $\omega\text{-homogeneous.}$

if two elements satisfy the same formulas, then there is an automorphism bringing one to the other.

Definition

A model *M* of PA is *recursively saturated* if every recursive type over *M* is realized in *M*.

Fact

Countable recursively saturated models of PA are $\omega\text{-homogeneous.}$

Definition

A model *M* of PA is *arithmetically saturated* if it is recursively saturated and $(\mathbb{N}, SSy_{\mathbb{N}}(M)) \models ACA_0$.

Fix a countable arithmetically saturated model M of PA.

Fix a countable arithmetically saturated model M of PA.

Fix a countable arithmetically saturated model M of PA.

Definition

A cut of *M* is *elementary* if it is an elementary substructure of *M*. We write $I \prec_e M$ for '*I* is an elementary cut of *M*.'

Fix a countable arithmetically saturated model M of PA.

Definition

A cut of *M* is *elementary* if it is an elementary substructure of *M*. We write $I \prec_e M$ for '*I* is an elementary cut of *M*.'

open sets

Fix a countable arithmetically saturated model M of PA.

Definition

A cut of *M* is *elementary* if it is an elementary substructure of *M*. We write $I \prec_e M$ for '*I* is an elementary cut of *M*.'

Definition

An *elementary interval* is a *nonempty* set of the form

$$[a, b] = \{ I \prec_{e} M : a \in I < b \}$$

open sets

where $a, b \in M$.

Fix a countable arithmetically saturated model M of PA.

Definition

A cut of *M* is *elementary* if it is an elementary substructure of *M*. We write $I \prec_e M$ for '*I* is an elementary cut of *M*.'

Definition

An *elementary interval* is a *nonempty* set of the form

$$[a, b] = \{ I \prec_e M : a \in I < b \}$$

open sets

where $a, b \in M$.

Fact

The elementary intervals generate a topology on the collection of all elementary cuts.

Fix a countable arithmetically saturated model M of PA.

Definition

A cut of *M* is *elementary* if it is an elementary substructure of *M*. We write $I \prec_e M$ for '*I* is an elementary cut of *M*.'

Definition

An *elementary interval* is a *nonempty* set of the form

$$[a, b] = \{ I \prec_{e} M : a \in I < b \}$$

open sets

where $a, b \in M$.

Fact

The space of elementary cuts is homeomorphic to the Cantor set.

Genericity

Definition

A subset of a topological space is *comeagre* if it contains a countable intersection of dense open sets.

Definition

A subset of a topological space is *comeagre* if

it contains a countable intersection of dense open sets.

A property is 'generic' if it is satisfied by a 'large' number of cuts.

Definition

A subset of a topological space is *comeagre* if

it contains a countable intersection of dense open sets.

A property is 'generic' if it is satisfied by a 'large' number of cuts.

Definition

A subset of a topological space is *comeagre* if

it contains a countable intersection of dense open sets.

Definition

An elementary cut is generic if

it is contained in any comeagre set of elementary cuts that is closed under the automorphisms of M.

A property is 'generic' if it is satisfied by a 'large' number of cuts.

Definition

A subset of a topological space is *comeagre* if

it contains a countable intersection of dense open sets.

Definition

An elementary cut is generic if

it is contained in any comeagre set of elementary cuts

that is closed under the automorphisms of M.

A generic cut satisfies *all* 'generic' properties.

Theorem

Let $c \in M$ and $[\![a, b]\!]$ be an elementary interval. Then there is an elementary subinterval $[\![r, s]\!]$ of $[\![a, b]\!]$ such that

for every elementary subinterval $\llbracket u, v \rrbracket$ of $\llbracket r, s \rrbracket$ there is an elementary subinterval $\llbracket r', s' \rrbracket$ of $\llbracket u, v \rrbracket$ such that $(M, r, s, c) \cong (M, r', s', c)$.

Theorem

Let $c \in M$ and $[\![a, b]\!]$ be an elementary interval. Then there is an elementary subinterval $[\![r, s]\!]$ of $[\![a, b]\!]$ such that

for every elementary subinterval $\llbracket u, v \rrbracket$ of $\llbracket r, s \rrbracket$ there is an elementary subinterval $\llbracket r', s' \rrbracket$ of $\llbracket u, v \rrbracket$ such that $(M, r, s, c) \cong (M, r', s', c)$.

This subinterval [r, s] is said to be *pregeneric over c*.

Theorem

Let $c \in M$ and $[\![a, b]\!]$ be an elementary interval. Then there is an elementary subinterval $[\![r, s]\!]$ of $[\![a, b]\!]$ such that

for every elementary subinterval $\llbracket u, v \rrbracket$ of $\llbracket r, s \rrbracket$ there is an elementary subinterval $\llbracket r', s' \rrbracket$ of $\llbracket u, v \rrbracket$ such that $(M, r, s, c) \cong (M, r', s', c)$.

This subinterval [r, s] is said to be *pregeneric over c*.

self-similarity

Theorem

Let $c \in M$ and $[\![a, b]\!]$ be an elementary interval. Then there is an elementary subinterval $[\![r, s]\!]$ of $[\![a, b]\!]$ such that

for every elementary subinterval $\llbracket u, v \rrbracket$ of $\llbracket r, s \rrbracket$ there is an elementary subinterval $\llbracket r', s' \rrbracket$ of $\llbracket u, v \rrbracket$ such that $(M, r, s, c) \cong (M, r', s', c)$.

This subinterval [r, s] is said to be *pregeneric over c*.

Proof.

A tree argument.

Take an enumeration $(c_n)_{n \in \mathbb{N}}$ of M.

Take an enumeration $(c_n)_{n \in \mathbb{N}}$ of M. Starting with an arbitrary elementary interval $\llbracket a_0, b_0 \rrbracket$, construct a sequence $\llbracket a_0, b_0 \rrbracket \supseteq \llbracket a_1, b_1 \rrbracket \supseteq \llbracket a_2, b_2 \rrbracket \supseteq \cdots$ such that $\llbracket a_{n+1}, b_{n+1} \rrbracket$ is pregeneric over c_n for all $n \in \mathbb{N}$.

Take an enumeration $(c_n)_{n \in \mathbb{N}}$ of M. Starting with an arbitrary elementary interval $\llbracket a_0, b_0 \rrbracket$, construct a sequence $\llbracket a_0, b_0 \rrbracket \supseteq \llbracket a_1, b_1 \rrbracket \supseteq \llbracket a_2, b_2 \rrbracket \supseteq \cdots$ such that $\llbracket a_{n+1}, b_{n+1} \rrbracket$ is pregeneric over c_n for all $n \in \mathbb{N}$. Then there is a unique elementary cut in $\bigcap_{n \in \mathbb{N}} \llbracket a_n, b_n \rrbracket$.

Take an enumeration $(c_n)_{n \in \mathbb{N}}$ of M. Starting with an arbitrary elementary interval $\llbracket a_0, b_0 \rrbracket$, construct a sequence $\llbracket a_0, b_0 \rrbracket \supseteq \llbracket a_1, b_1 \rrbracket \supseteq \llbracket a_2, b_2 \rrbracket \supseteq \cdots$ such that $\llbracket a_{n+1}, b_{n+1} \rrbracket$ is pregeneric over c_n for all $n \in \mathbb{N}$. Then there is a unique elementary cut in $\bigcap_{n \in \mathbb{N}} \llbracket a_n, b_n \rrbracket$.

Theorem

The cuts constructed in this way are exactly the generic cuts.

Take an enumeration $(c_n)_{n \in \mathbb{N}}$ of M. Starting with an arbitrary elementary interval $\llbracket a_0, b_0 \rrbracket$, construct a sequence $\llbracket a_0, b_0 \rrbracket \supseteq \llbracket a_1, b_1 \rrbracket \supseteq \llbracket a_2, b_2 \rrbracket \supseteq \cdots$ such that $\llbracket a_{n+1}, b_{n+1} \rrbracket$ is pregeneric over c_n for all $n \in \mathbb{N}$. Then there is a unique elementary cut in $\bigcap_{n \in \mathbb{N}} \llbracket a_n, b_n \rrbracket$.

Theorem

The cuts constructed in this way are exactly the generic cuts.

Proof.

Back-and-forth.

Generic cuts under automorphisms

Proposition $(M, I_1) \cong (M, I_2)$ for all generic cuts I_1, I_2 in M.

Generic cuts under automorphisms

Proposition $(M, I_1) \cong (M, I_2)$ for all generic cuts I_1, I_2 in M. Theorem If I is a generic cut of M and $c, d \in I$ such that

 $\operatorname{tp}(c)=\operatorname{tp}(d),$

then

$$(M, I, c) \cong (M, I, d).$$

Description of truth

Theorem Let *I* be a generic cut of *M*. Then for all $c, d \in M$,

$$(M, I, c) \cong (M, I, d)$$

if and only if

•
$$tp(c) = tp(d)$$
, and

• for every \mathscr{L}_A -formula $\varphi(x, z)$,

 $\{x \in I : M \models \varphi(x, c)\}$ has an upper bound in I

$\$

 $\{x \in I : M \models \varphi(x, d)\}$ has an upper bound in *I*.

Description of truth

Theorem Let *I* be a generic cut of *M*. Then for all $c, d \in M$,

$$(M, I, c) \cong (M, I, d)$$

if and only if

•
$$tp(c) = tp(d)$$
, and

• for every \mathscr{L}_A -formula $\varphi(x, z)$,

 $\{x \in I : M \models \varphi(x, c)\}$ has an upper bound in I

$\$

 $\{x \in I : M \models \varphi(x, d)\}$ has an upper bound in *I*.

What we did

What we did

Picked out a more tractable (M, I) for each countable arithmetically saturated model M.

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).
- Understood more about the fine structure of countable arithmetically saturated models.

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).
- Understood more about the fine structure of countable arithmetically saturated models.

What next?

Let I be a generic cut.

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).
- Understood more about the fine structure of countable arithmetically saturated models.

What next?

Let I be a generic cut.

▶ What is special about (*I*, SSy_{*I*}(*M*)) and Th(*M*, *I*)?

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).
- Understood more about the fine structure of countable arithmetically saturated models.

What next?

Let I be a generic cut.

- ▶ What is special about (*I*, SSy_{*I*}(*M*)) and Th(*M*, *I*)?
- ▶ How does Aut(*M*, *I*) sit inside Aut(*M*)?

What we did

- Picked out a more tractable (M, I) for each countable arithmetically saturated model M.
- Obtained some information about the automorphisms of this (M, I).
- Understood more about the fine structure of countable arithmetically saturated models.

What next?

Let I be a generic cut.

- ▶ What is special about (*I*, SSy_{*I*}(*M*)) and Th(*M*, *I*)?
- ▶ How does Aut(*M*, *I*) sit inside Aut(*M*)?
- Investigate the existential closure properties of (M, I).