Ramsey's theorem for pairs and provable recursive functions

Alexander Kreuzer (joint work with Ulrich Kohlenbach)

TU Darmstadt

Logic Colloquium 2009

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Ramsey's Theorem for pairs

Let $[\mathbb{N}]^2$ be the set of unordered pairs of natural numbers. A *n*-coloring of $[\mathbb{N}]^2$ is a map of $[\mathbb{N}]^2$ into **n**.

Definition (RT_n^2)

For every *n*-coloring of $[\mathbb{N}]^2$ exists an infinite *homogeneous* set $H \subseteq \mathbb{N}$ (i.e. the coloring is constant on $[H]^2$).

Ramsey's Theorem for pairs

Let $[\mathbb{N}]^2$ be the set of unordered pairs of natural numbers. A *n*-coloring of $[\mathbb{N}]^2$ is a map of $[\mathbb{N}]^2$ into **n**.

Definition (RT_n^2)

For every *n*-coloring of $[\mathbb{N}]^2$ exists an infinite *homogeneous* set $H \subseteq \mathbb{N}$ (i.e. the coloring is constant on $[H]^2$). $\mathrm{RT}^2_{<\infty}$ is defined as $\forall n \, \mathrm{RT}^2_n$.

Theorem (Hirst) RT₂² \rightarrow Π_1^0 -CP

Theorem (Hirst) $RT_2^2 \rightarrow \Pi_1^0$ -CP

Theorem (Jockusch)

There exists a computable coloring, which has no in 0' computable infinite homogeneous set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (Hirst) $\operatorname{RT}_2^2 \rightarrow \Pi_1^0$ -CP

Theorem (Jockusch)

```
There exists a computable coloring,
which has no in 0' computable infinite homogeneous set.
```

```
Theorem (Cholak, Jockusch, Slaman)

RCA_0 + \Sigma_2^0-IA + RT_2^2

is \Pi_1^1-conservative over RCA_0 + \Sigma_2^0-IA.
```

Theorem (Hirst) $\operatorname{RT}_2^2 \rightarrow \Pi_1^0$ -CP

Theorem (Jockusch)

```
There exists a computable coloring,
which has no in 0' computable infinite homogeneous set.
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

```
Theorem (Cholak, Jockusch, Slaman)

RCA_0 + \Sigma_2^0 \cdot IA + RT_2^2

is \Pi_1^1-conservative over RCA_0 + \Sigma_2^0 \cdot IA.
```

Question (Cholak, Jockusch, Slaman) Does RT_2^2 imply Σ_2^0 -IA?

Main Result

For a schema ${\mathcal S}$ let ${\mathcal S}^-$ denote the schema restricted to instances which only have number parameters.

```
Theorem (K., Kohlenbach)
For every fixed n
```

```
G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2
```

is

- Π_2^0 -conservative over PRA,
- Π_3^0 -conservative over $PRA + \Sigma_1^0$ -IA and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Grzegorczyk Arithmetic in all finite types $(G_{\infty}A^{\omega})$

Arithmetic in all finite types corresponding to the Grzegorczyk hierarchy.

Contains

- quantifier free induction,
- bounded primitive recursion with function parameters,

- all primitive recursive functions,
- but not all primitive recursive functionals. The function iterator is not contained.

Grzegorczyk Arithmetic in all finite types $(G_{\infty}A^{\omega})$

Arithmetic in all finite types corresponding to the Grzegorczyk hierarchy.

Contains

- quantifier free induction,
- bounded primitive recursion with function parameters,
- all primitive recursive functions,
- but not all primitive recursive functionals. The function iterator is not contained.

Remark

The system RCA_0^* (i.e. RCA_0 with quantifier-free induction and exponential function instead of Σ_1^0 -IA) can be embedded into $G_\infty A^\omega$.

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_{1}^{0}-CA^{-}$

Lemma $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^- \text{ proves}$ $\blacktriangleright \Pi_1^0-IA^-, \Sigma_1^0-IA^-,$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$

Lemma

 $G_\infty A^\omega + QF\text{-}AC + WKL + \Pi^0_1\text{-}CA^-$ proves

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

►
$$\Pi_1^0$$
-IA⁻, Σ_1^0 -IA⁻,

▶
$$\Pi_1^0$$
-AC⁻, Π_1^0 -CP⁻,

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$

Lemma

 $G_\infty A^\omega + QF\text{-}AC + WKL + \Pi^0_1\text{-}CA^-$ proves

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

►
$$\Pi_1^0$$
-IA⁻, Σ_1^0 -IA⁻,

▶
$$\Pi_1^0$$
-AC⁻, Π_1^0 -CP⁻,

►
$$\Sigma_1^0$$
-WKL⁻.

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$

Lemma

 $G_{\infty}A^{\omega} + QF\text{-}AC + WKL + \Pi_1^0\text{-}CA^-$ proves

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$$\blacktriangleright \Pi_1^0 \text{-} \text{IA}^-, \ \Sigma_1^0 \text{-} \text{IA}^-,$$

•
$$\Pi_1^0$$
-AC⁻, Π_1^0 -CP⁻,

►
$$\Sigma_1^0$$
-WKL⁻

All these principles cannot be nested.

More gerneral Result

Same as above except comprehension and Ramsey's theorem instances are also allowed to depend on function parameters of the sentence.

Theorem (K., Kohlenbach)

Let $\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL$ and let ξ_1 , ξ_2 be closed terms and n be fixed.

 $\begin{aligned} \mathcal{T}^{\omega} &\vdash \forall f \; \left(\Pi_1^0 \text{-CA}(\xi_1(f)) \land \forall k \operatorname{RT}_n^2(\xi_2(f,k)) \to \exists x \in \mathbb{N} \; A_{qf}(f,x)\right) \\ \Rightarrow \textit{ one can extract a (Kleene-)primitive recursive functional } \Phi \textit{ s.t.} \\ \operatorname{PRA}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \; A_{qf}(f,\Phi(f)) \end{aligned}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

More gerneral Result

Same as above except comprehension and Ramsey's theorem instances are also allowed to depend on function parameters of the sentence.

Theorem (K., Kohlenbach)

Let $\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL$ and let ξ_1 , ξ_2 be closed terms and n be fixed.

 $\begin{aligned} \mathcal{T}^{\omega} &\vdash \forall f \; \left(\Pi_1^0 \text{-CA}(\xi_1(f)) \;\land\; \forall k \operatorname{RT}_n^2(\xi_2(f,k)) \to \exists x \in \mathbb{N} \; A_{qf}(f,x)\right) \\ \Rightarrow \; \textit{one can extract a (Kleene-)primitive recursive functional } \Phi \; \textit{s.t.} \\ \operatorname{PRA}^{\omega} &\vdash \forall f : \mathbb{N}^{\mathbb{N}} \; A_{qf}(f,\Phi(f)) \end{aligned}$

Experience from proof-mining shows that many proofs from mathematics can be formalized in this system.

Proof

Theorem For every fixed n

1

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^- + RT_n^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

is

- Π_2^0 -conservative over PRA,
- Π_3^0 -conservative over $PRA + \Sigma_1^0$ -IA and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Proof

Theorem For every fixed n

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^- + RT_n^2$$

is

Π₂⁰-conservative over PRA,
 Π₃⁰-conservative over PRA + Σ₁⁰-IA and
 Π₄⁰-conservative over PRA + Π₁⁰-CP.

Proof.

1. Show $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$ proves $RT_n^{2^-}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proof

Theorem For every fixed n

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2$$

is

Π₂⁰-conservative over PRA,
 Π₃⁰-conservative over PRA + Σ₁⁰-IA and
 Π₄⁰-conservative over PRA + Π₁⁰-CP.

Proof.

- 1. Show $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 CA^-$ proves $RT_n^2^-$.
- 2. Use elimination of Skolem functions to obtain conservation result.

Reduction step

Analyze Erdős' and Rado's proof of RT_n^2 based on full König's Lemma.

```
Theorem (K., Kohlenbach)
```

$$\mathbf{G}_{\infty}\mathbf{A}^{\omega} + \boldsymbol{\Pi}_{1}^{0} \cdot \mathbf{I}\mathbf{A}^{-} \vdash \boldsymbol{\Sigma}_{1}^{0} \cdot \mathbf{W}\mathbf{K}\mathbf{L}^{-} \to \mathbf{RT}_{n}^{2^{-}}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

for every fixed n.

Reduction step

Analyze Erdős' and Rado's proof of RT_n^2 based on full König's Lemma.

```
Theorem (K., Kohlenbach)
```

$$\mathbf{G}_{\infty}\mathbf{A}^{\omega} + \boldsymbol{\Pi}_{1}^{0} \cdot \mathbf{I}\mathbf{A}^{-} \vdash \boldsymbol{\Sigma}_{1}^{0} \cdot \mathbf{W}\mathbf{K}\mathbf{L}^{-} \to \mathbf{RT}_{n}^{2^{-}}$$

for every fixed n.

Corollary

 $G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$ proves RT_n^{2-} , for every fixed n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\mathsf{Bound} \, \operatorname{on} \, n$

Theorem (Jockusch)

The exists a primitive recursive sequence of instances of $RT^2_{<\infty}$ proving the totality of the Ackermann-function.

Theorem (K., Kohlenbach)

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- \nvDash RT^{2-}_{<\infty}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Elimination of Skolem functions for monotone formulas

Theorem (Kohlenbach)

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0-CA^-$$

is

- Π_2^0 -conservative over PRA,
- Π_3^0 -conservative over $PRA + \Sigma_1^0$ -IA and
- Π_4^0 -conservative over PRA + Π_1^0 -CP.

Elimination of Skolem functions for monotone formulas

Let
$$\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL.$$

Theorem (Kohlenbach)

For every closed term ξ :

 $\mathcal{T}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \left(\Pi_{1}^{0} \text{-} \mathrm{CA}(\xi(f)) \to \exists x \in \mathbb{N} A_{qf}(f, x) \right)$

 \Rightarrow one can extract a (Kleene-)primitive recursive functional Φ s.t. PRA^{ω} $\vdash \forall f : \mathbb{N}^{\mathbb{N}} A_{qf}(f, \Phi(f)).$

Elimination of Skolem functions for monotone formulas

Let
$$\mathcal{T}^{\omega} := G_{\infty}A^{\omega} + QF-AC + WKL.$$

Theorem (Kohlenbach)

For every closed term ξ :

 $\begin{aligned} \mathcal{T}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \left(\Pi_{1}^{0} \text{-} \mathrm{CA}(\xi(f)) \to \exists x \in \mathbb{N} \ A_{qf}(f, x) \right) \\ \Rightarrow \text{ one can extract a (Kleene-)primitive recursive functional } \Phi \text{ s.t.} \\ \mathrm{PRA}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \ A_{qf}(f, \Phi(f)). \end{aligned}$

Theorem (K., Kohlenbach)

Let ξ_1 and ξ_2 be closed terms and n be fixed.

 $\mathcal{T}^{\omega} \vdash \forall f \ \left(\Pi_1^0 \text{-CA}(\xi_1(f)) \land \forall k \operatorname{RT}_n^2(\xi_2(f,k)) \to \exists x \in \mathbb{N} \ A_{qf}(f,x)\right)$ $\Rightarrow one \ can \ extract \ a \ (Kleene-)primitive \ recursive \ functional \ \Phi \ s.t.$ $\operatorname{PRA}^{\omega} \vdash \forall f : \mathbb{N}^{\mathbb{N}} \ A_{qf}(f,\Phi(f))$

Results

Theorem (K., Kohlenbach)

For every fixed n a primitive recursive sequence of instance of RT_n^2 does not prove the totality of the Ackermann-function. Especially

$$G_{\infty}A^{\omega} + QF-AC + WKL + \Pi_1^0 - CA^- + RT_n^2 \not\vdash \Sigma_2^0 - IA.$$

Remark

This yields in the language of RCA_0 :

$$\operatorname{WKL}_{0}^{*} + \Pi_{1}^{0} - \operatorname{CA}^{-} + \operatorname{RT}_{n}^{2^{-}} \nvDash \Sigma_{2}^{0} - \operatorname{IA}$$

References

- [Kreuzer, Kohlenbach 2009] A. Kreuzer, U. Kohlenbach Ramsey's theorem for pairs and provable recursive functions to appear in Notre Dame Journal of Formal Logic.
- [Kohlenbach 1996] U. Kohlenbach
 Elimination of Skolem functions for monotone formulas in analysis
 Arch. Math. Logic 37 (1998), 363–390.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00