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Ramsey’s Theorem for pairs

Let [N]2 be the set of unordered pairs of natural numbers.
A n-coloring of [N]2 is a map of [N]2 into n.

Definition (RT2
n)

For every n-coloring of [N]2

exists an infinite homogeneous set H ⊆ N
(i.e. the coloring is constant on [H]2).

RT2
<∞ is defined as ∀nRT2

n.
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Strength of RT2
n

Theorem (Hirst)

RT2
2→Π0

1-CP

Theorem (Jockusch)

There exists a computable coloring,
which has no in 0′ computable infinite homogeneous set.

Theorem (Cholak, Jockusch, Slaman)

RCA0 + Σ0
2-IA + RT2

2

is Π1
1-conservative over RCA0 + Σ0

2-IA.
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Main Result

For a schema S let S− denote the schema restricted to instances
which only have number parameters.

Theorem (K., Kohlenbach)

For every fixed n

G∞Aω + QF-AC + WKL + Π0
1-CA− + RT2

n
−

is

I Π0
2-conservative over PRA,

I Π0
3-conservative over PRA + Σ0

1-IA and

I Π0
4-conservative over PRA + Π0

1-CP.



Grzegorczyk Arithmetic in all finite types (G∞Aω)

Arithmetic in all finite types corresponding to the Grzegorczyk
hierarchy.
Contains

I quantifier free induction,

I bounded primitive recursion with function parameters,

I all primitive recursive functions,

I but not all primitive recursive functionals.
The function iterator is not contained.

Remark
The system RCA∗0 (i.e. RCA0 with quantifier-free induction and
exponential function instead of Σ0

1-IA) can be embedded into
G∞Aω.
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More gerneral Result

Same as above except comprehension and Ramsey’s theorem
instances are also allowed to depend on function parameters of the
sentence.

Theorem (K., Kohlenbach)

Let T ω := G∞Aω + QF-AC + WKL and let ξ1, ξ2 be closed
terms and n be fixed.

T ω ` ∀f
(
Π0

1-CA(ξ1(f)) ∧ ∀kRT2
n(ξ2(f, k))→∃x ∈ NAqf (f, x)

)
⇒ one can extract a (Kleene-)primitive recursive functional Φ s.t.

PRAω ` ∀f : NNAqf (f,Φ(f))

Experience from proof-mining shows that many proofs from
mathematics can be formalized in this system.
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Reduction step

Analyze Erdős’ and Rado’s proof of RT2
n based on full König’s

Lemma.
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Bound on n

Theorem (Jockusch)

The exists a primitive recursive sequence of instances of RT2
<∞

proving the totality of the Ackermann-function.

Theorem (K., Kohlenbach)

G∞Aω + QF-AC + WKL + Π0
1-CA− 0 RT2−

<∞



Elimination of Skolem functions for monotone formulas

Theorem (Kohlenbach)
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Results

Theorem (K., Kohlenbach)

For every fixed n a primitive recursive sequence of instance of RT2
n

does not prove the totality of the Ackermann-function. Especially

G∞Aω + QF-AC + WKL + Π0
1-CA− + RT2

n
− 0 Σ0

2-IA.

Remark
This yields in the language of RCA0:

WKL∗0 + Π0
1-CA− + RT2

n
− 0 Σ0

2-IA
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