Weak Ehrenfeucht-Fraïssé Games

Vadim Kulikov

University of Helsinki Department of Mathematics and Statistics

Logic Colloquium 2009

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

How similar can non-isomorphic structures be? How can we measure that? Standard definitions of equivalence provide some examples:

- Elementary equivalence $\mathcal{A} \equiv \mathcal{B}$, when \mathcal{A} and \mathcal{B} satisfy the same FO-formulas.
- Equivalence in stronger languages: $\mathcal{A} \equiv_{\infty \omega} \mathcal{B}$, $\mathcal{A} \equiv_{\kappa \lambda} \mathcal{B}$ etc.
- Definition of equivalences via games.

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Partial Isomorphism

Let ${\mathcal A}$ and ${\mathcal B}$ be given structures of a finite relational vocabulary.

Definition

Let $X \subset A$ and $Y \subset B$. We say that $f: X \to Y$ is a *partial isomorphism* it preserves the relations, e.g. $(x, y) \in R^{\mathcal{A}} \iff (f(x), f(y)) \in R^{\mathcal{B}}$.

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Ehrenfeucht-Fraïssé Games

Assume that structures A and B and an ordinal γ are given. The EF-game of length γ is played between players I and II as follows. The idea is

Player I: "The structures are non-isomorphic!"

Player II: "You are mistaken!"

Let $\alpha < \gamma$. At move α

- first player I chooses an element from A ∪ B. Denote that element a_α if it is in A and b_α if it is in B.
- then player II answers by an element b_α ∈ B, if player I chose from A and by an element a_α ∈ A, if player I chose from B.

After γ moves are done, the game is over. Who wins?

If the function a_α → b_α is a partial isomorphism between A and B, then player II wins. Otherwise player I wins.

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Weak Ehrenfeucht-Fraïssé Game

The weak version of EF-games is also based on the principle Player I: "The structures are non-isomorphic!" Player II: "You are wrong!"

It is played like this: On move $\alpha < \gamma =$ game length

- First player I chooses an element $a_{\alpha} \in A \cup B$
- Then player II chooses an element $b_{\alpha} \in A \cup B$.

Who wins? Let $X = \{a_{\alpha} \mid \alpha < \gamma\} \cup \{b_{\alpha} \mid \alpha < \gamma\}$. Player II wins if $A \cap X \cong B \cap X$.

イロト イポト イヨト イヨト

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Strategy

Definition

A *strategy* of a player in a game is a function from the set of all possible combinations of moves of the opponent to the set of all possible own moves. Technically, $\sigma: (A \cup B)^{<\gamma} \to A \cup B$ is a strategy of player I (or II) in the (weak) EF-game of length γ .

Definition

A *winning strategy* is such a strategy that using it, the player (whose strategy it is) always wins. A game is *determined* if one of the players has a winnning strategy. Otherwise non-determined.

Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Trivial things

Theorem

- $II \uparrow \mathsf{EF}_{\alpha}(\mathcal{A}, \mathcal{B}) \to II \uparrow \mathsf{EF}^{*}_{\alpha}(\mathcal{A}, \mathcal{B})$
- $\alpha < \beta \rightarrow (\mathsf{II} \uparrow \mathsf{EF}_{\beta}(\mathcal{A}, \mathcal{B}) \rightarrow \mathsf{II} \uparrow \mathsf{EF}_{\alpha}(\mathcal{A}, \mathcal{B}))$

•
$$\mathcal{A} \sim_{\alpha} \mathcal{B} \iff \mathbf{II} \uparrow \mathsf{EF}_{\alpha}(\mathcal{A}, \mathcal{B})$$
 and
 $\mathcal{A} \sim_{\alpha}^{*} \mathcal{B} \iff \mathbf{II} \uparrow \mathsf{EF}_{\alpha}^{*}(\mathcal{A}, \mathcal{B})$ are equivalence relations for
each α .

イロト イポト イヨト イヨト

ъ

Introduction

Results Construction of structures Obtaining results Literature Ehrenfeucht-Fraïssé Games Weak Ehrenfeucht-Fraïssé Game Determinacy Examples

Example:
$$\mathcal{A}=(\mathbb{N},\leq),$$
 $\mathcal{B}=(\mathbb{Z},\leq)$

Exercise

Show that $I \uparrow EF_2(\mathbb{N}, \mathbb{Z})$ and $II \uparrow EF_n^*(\mathbb{N}, \mathbb{Z})$ for every finite $n \ge 0$.

Vadim Kulikov Weak Ehrenfeucht-Fraïssé Games

・ロト ・ ア・ ・ ヨト ・ ヨト

ъ

Determinacy and connections between EF and EF*

- The games EF_{ω} and EF_{ω}^* are equivalent. (Kueker [3])
- If ω < α < ω₁, then EF^{*}_α is properly weaker than EF_α.
 (New)
- It is independent of ZFC whether or not the games EF_{ω1} and EF^{*}_{ω1} are equivalent on structures of size ≤ ℵ₂. (New, but strongly using Mekler-Hyttinen-Shelah-Vnnen [4], [1])

Determinacy and connections between EF and EF*

- It is consistent that there are structures A and B of cardinality ℵ₂ such that EF^{*}_{ω1}(A, B) is not determined. (New)
- In ZFC, there are structures A and B (bigger than ℵ₂) such that EF^{*}_{ω1}(A, B) is non-determined. (New)
- In ZFC there are such structures that player II has a winning strategy in EF^{*}_β(A, B) but not in EF^{*}_α(A, B), where α < β are ordinal numbers. It is consistent with ZFC that the above holds for α and β cardinals. (New)

< ロ > < 同 > < 回 > < 回 > .

 $\mathsf{EF}_{\omega} = \mathsf{EF}_{\omega}^*$: Closer look.

By a theorem of Carol Karp

$$\mathcal{A} \equiv_{\infty \omega} \mathcal{B} \iff \mathbf{II} \uparrow \mathsf{EF}_{\omega}(\mathcal{A}, \mathcal{B}).$$
(1)

By a theorem of David Kueker

 $\mathcal{A} \equiv_{\infty \omega} \mathcal{B} \iff \{ X \subset A \cup B \mid X \cap A \cong X \cap B, |X| = \omega \} \text{ is cub. } (2)$

Let us give an argument which shows (1) \iff (2) \iff II \uparrow EF^{*}_w(\mathcal{A}, \mathcal{B}):

- $II \uparrow EF_{\omega} \Rightarrow II \uparrow EF_{\omega}^*$: clear.
- II $\uparrow \mathsf{EF}^*_{\omega} \Rightarrow$ (2): take closure of the strategy.

(2)⇒II ↑ EF_ω: counter example, determinacy of EF_ω, closure of the strategy of I, a contradiction.

Weak game of cardinal length Structures and their properties

When $\mathsf{EF}^*_{\kappa}(\mathcal{A}, \mathcal{B})$ is non-determined?

Theorem

For κ a cardinal the game $EF^*_{\kappa}(\mathcal{A}, \mathcal{B})$ is equivalent to the game where at move α

• First player I chooses a subset $X_{\alpha} \subset A \cup B$ of size $\leq \kappa$

• Then player II chooses a subset $Y_{\alpha} \in A \cup B$ of size $\leq \kappa$. and player II wins iff

$$\mathcal{A} \cap \bigcup_{i < \kappa} X_i \cup \bigcup_{i < \kappa} Y_i \cong \mathcal{B} \cap \bigcup_{i < \kappa} X_i \cup \bigcup_{i < \kappa} Y_i.$$

Weak game of cardinal length Structures and their properties

Domains of $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$

Let us consider the following construction. Let μ be an uncountable cardinal and $S \subset S^{\mu}_{\omega}$. In the following $\mu \times \omega$ is equipped with reversed lexicographical order and pr_1 and pr_2 are projections respectively onto μ and ω . Then let

$$A(\mu, S) = \{ f: \alpha + 1 \rightarrow \mu \times \omega \mid \alpha < \mu, \\ f \text{ is strictly increasing,} \end{cases}$$

for each $n < \omega$ the set $pr_1[ran(f) \cap (\mu \times \{n\})]$ is ω -closed in μ and is contained in S}

Weak game of cardinal length Structures and their properties

Domains of $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$

Let us consider the following construction. Let μ be an uncountable cardinal and $S \subset S_{\omega}^{\mu}$. In the following $\mu \times \omega$ is equipped with reversed lexicographical order and pr₁ and pr₂ are projections respectively onto μ and ω . Then let

$$B(\mu, S) = \{ f: \alpha + 1 \rightarrow \mu \times \omega \mid \alpha < \mu, \\ f \text{ is strictly increasing,} \\ \text{for each } n < \omega \text{ the set } \text{pr}_1[\text{ran}(f) \cap (\mu \times \{n\})] \\ \text{ is } \omega\text{-closed as a subset of } \mu \text{ and if } n > 0, \\ \text{then it is contained in } S \}.$$

Weak game of cardinal length Structures and their properties

Structure on $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$

The structures $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$ are *L*-structures with domains $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$, $L = \{\leq\}$ and $f \leq g \iff f \subset g$. Their cardinality is $2^{<\mu}$. Additionally let us add μ unary relations P_{α} , $\alpha < \mu$ so that

$$\mathcal{P}^{\mathcal{A}(\mu,\mathcal{S})}_{lpha} = \{f \in \mathcal{A}(\mu,\mathcal{S}) \mid \mathsf{dom}(f) = lpha + 1\}$$

and

$$\boldsymbol{P}^{\mathcal{B}(\mu,\mathcal{S})}_{\alpha} = \{ f \in \boldsymbol{B}(\mu,\mathcal{S}) \mid \mathsf{dom}(f) = \alpha + 1 \}.$$

The use of an infinite vocabulary can be avoided here, but the treatment becomes easier that way.

Weak game of cardinal length Structures and their properties

Properties of $\mathcal{A}(\mu, S)$ and $\mathcal{B}(\mu, S)$

Denote $\mathcal{A} = \mathcal{A}(\mu, S)$ and $\mathcal{B} = \mathcal{B}(\mu, S)$ and define $\mathcal{A}_{\alpha} = \{f \in \mathcal{A} \mid \operatorname{ran}(f_1) \subsetneq \alpha\}$ and $\mathcal{B}_{\alpha} = \{f \in \mathcal{B} \mid \operatorname{ran}(f_1) \subsetneq \alpha\}.$

Theorem

•
$$|\mathcal{A}_{\alpha}| = |\mathcal{B}_{\alpha}| = |\alpha|^{<\mu}.$$

•
$$\mathcal{A}_{lpha} \subset \mathcal{A}_{eta}$$
, if $lpha < eta$. Similar for \mathcal{B} .

•
$$\mathcal{A} = \cup_{\alpha < \mu} \mathcal{A}_{\alpha}$$
 and $\mathcal{B} = \cup_{\alpha < \mu} \mathcal{B}_{\alpha}$.

• $\mathcal{A}_{\alpha} \cong \mathcal{B}_{\alpha} \iff \alpha \cap S$ contains an ω -cub set.

Moreover for each increasing and ω-continuous
 h: α → S ∩ α there is an isomorphism F_h: A_α → B_α such that F_h ⊂ F_{h'} whenever h ⊂ h'.

Weak game of cardinal length Structures and their properties

Connection with the cub-game

Corollary

Let $\mu > \omega_1$ and $S \subset S^{\mu}_{\omega}$. If player I does not have a winning strategy in $G^{\omega_1}_{\omega}(S)$ and S contains arbitrarily long ω -cub sets, then he does not have one in $\mathsf{EF}^*_{\omega_1}(\mathcal{A}(\mu, S), \mathcal{B}(\mu, S))$.

Corollary

Let μ be a cardinal, $S \subset S^{\mu}_{\omega}$ and $\hat{S} = \{ \alpha \in S^{\mu}_{\omega_1} \mid \alpha \cap S \text{ contains a cub} \}$. If player **II** does not have a winning strategy in

 $G^{\omega_1}_{\omega_1}(\hat{S}),$

then she does not have one in $\mathsf{EF}^*_{\omega_1}(\mathcal{A}(\mu, S), \mathcal{B}(\mu, S))$.

イロン イヨン イヨン

Weak game of cardinal length Structures and their properties

Connection with the cub-game

Corollary

If $S \subset S^{\mu}_{\omega}$ satisfies the following three conditions ND1–ND3, then $\mathsf{EF}^*(\mathcal{A}(\mu, S), \mathcal{B}(\mu, S))$ is non-determined.

- ND1 Player I does not have a winning strategy in $G^{\omega_1}_{\omega}(S)$
- ND2 S contains arbitrarily long ω -cub sets.
- ND3 Player II does not have a winning strategy in

When the size of the structures is \aleph_2

One can force a generic set $G \subset \omega_2$, using ordinary Cohen forcing, which satisfies the conditions ND1-ND3 above. Thus

Theorem

It is consistent that CH and there are such \mathcal{A} and \mathcal{B} of size \aleph_2 that $\mathsf{EF}^*_{\omega_1}(\mathcal{A}, \mathcal{B})$ is non-determined.

In ZFC, choosing $\mu = \max\{(2^{\omega})^+, \omega_4\}$ one can construct such a set $S \subset S^{\mu}_{\omega}$ that conditions ND1–ND3 hold.

Theorem

There are such A and B of size $2^{<\mu}$, where $\mu = \max\{(2^{\omega})^+, \omega_4\}$ that $\mathsf{EF}^*_{\omega_1}(A, B)$ is non-determined.

イロト イポト イヨト イヨト

Reflection?

As in the case with structures of size \aleph_2 , one can force such a set $S \subset S^{\mu}_{\omega}$ that conditions ND1–ND3 hold, where μ is above first singular cardinal, or say $\mu = \aleph^+_{\omega \cdot \omega}$. Then the game $\mathsf{EF}^*_{\lambda}(\mathcal{A}(\mu, S), \mathcal{B}(\mu, S))$ is non-determined when λ is regular and player **II** wins if λ is limit.

Corollary

It is possible that $\lambda < \kappa$ are cardinals and player II has a winning strategy in $\mathsf{EF}^*_{\kappa}(\mathcal{A}, \mathcal{B})$, but does not have a winning strategy in $\mathsf{EF}^*_{\lambda}(\mathcal{A}, \mathcal{B})$.

Bibliography

- T. Hyttinen, S. Shelah and J. Väänänen: More on the Ehrenfeucht-Fraïssé game of length ω_1 , Fundamenta Mathematicae, 175 (2002), no. 1, 79-96.
- Karp, Carol R. Finite-quantifier equivalence. In Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), pages 407–412. North-Holland, Amsterdam, 1965.
- D. W. Kueker: Countable approximations and Löwenheim-Skolem theorems, Annals of Math. Logic 11 (1977) 57-103.
- A. H. Mekler, S. Shelah and J. Väänänen: The Ehrenfeucht-Fraïssé-game of length ω_1 . Transactions of the American Mathematical Society, 339:567-580, 1993.