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Motivation

How similar can non-isomorphic structures be? How can we
measure that? Standard definitions of equivalence provide
some examples:

Elementary equivalence A ≡ B, when A and B satisfy the
same FO-formulas.
Equivalence in stronger languages: A ≡∞ω B, A ≡κλ B
etc.
Definition of equivalences via games.
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Determinacy
Examples

Partial Isomorphism

Let A and B be given structures of a finite relational vocabulary.

Definition
Let X ⊂ A and Y ⊂ B. We say that f : X → Y is a partial
isomorphism it preserves the relations, e.g.
(x , y) ∈ RA ⇐⇒ (f (x), f (y)) ∈ RB.
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Ehrenfeucht-Fraı̈ssé Games

Assume that structures A and B and an ordinal γ are given.
The EF-game of length γ is played between players I and II as
follows. The idea is

Player I : ”The structures are non-isomorphic!”
Player II: ”You are mistaken!”

Let α < γ. At move α
first player I chooses an element from A ∪ B. Denote that
element aα if it is in A and bα if it is in B.
then player II answers by an element bα ∈ B, if player I
chose from A and by an element aα ∈ A, if player I chose
from B.

After γ moves are done, the game is over. Who wins?
If the function aα 7→ bα is a partial isomorphism between A
and B, then player II wins. Otherwise player I wins.
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Weak Ehrenfeucht-Fraı̈ssé Game

The weak version of EF-games is also based on the principle
Player I : ”The structures are non-isomorphic!”
Player II: ”You are wrong!”

It is played like this: On move α < γ = game length
First player I chooses an element aα ∈ A ∪ B
Then player II chooses an element bα ∈ A ∪ B.

Who wins? Let X = {aα | α < γ} ∪ {bα | α < γ}. Player II wins
if A ∩ X ∼= B ∩ X .
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Strategy

Definition
A strategy of a player in a game is a function from the set of all
possible combinations of moves of the opponent to the set of all
possible own moves. Technically, σ : (A ∪ B)<γ → A ∪ B is a
strategy of player I (or II) in the (weak) EF-game of length γ.

Definition
A winning strategy is such a strategy that using it, the player
(whose strategy it is) always wins. A game is determined if one
of the players has a winnning strategy. Otherwise
non-determined.
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Trivial things

Theorem
II ↑ EFα(A,B)→ II ↑ EF∗α(A,B)

α < β → (II ↑ EFβ(A,B)→ II ↑ EFα(A,B))

A ∼α B ⇐⇒ II ↑ EFα(A,B) and
A ∼∗α B ⇐⇒ II ↑ EF∗α(A,B) are equivalence relations for
each α.
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Determinacy
Examples

Example: A = (N,≤), B = (Z,≤)

Exercise
Show that I ↑ EF2(N,Z) and II ↑ EF∗n(N,Z) for every finite n ≥ 0.
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Determinacy and connections between EF and EF∗

The games EFω and EF∗ω are equivalent. (Kueker [3])
If ω < α < ω1, then EF∗α is properly weaker than EFα.
(New)
It is independent of ZFC whether or not the games EFω1

and EF∗ω1
are equivalent on structures of size ≤ ℵ2. (New,

but strongly using Mekler-Hyttinen-Shelah-Vnnen [4], [1])
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Determinacy and connections between EF and EF∗

It is consistent that there are structures A and B of
cardinality ℵ2 such that EF∗ω1

(A,B) is not determined.
(New)
In ZFC, there are structures A and B (bigger than ℵ2) such
that EF∗ω1

(A,B) is non-determined. (New)
In ZFC there are such structures that player II has a
winning strategy in EF∗β(A,B) but not in EF∗α(A,B), where
α < β are ordinal numbers. It is consistent with ZFC that
the above holds for α and β cardinals. (New)
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EFω = EF∗ω: Closer look.

By a theorem of Carol Karp

A ≡∞ω B ⇐⇒ II ↑ EFω(A,B). (1)

By a theorem of David Kueker

A ≡∞ω B ⇐⇒ {X ⊂ A∪B | X∩A ∼= X∩B, |X | = ω} is cub. (2)

Let us give an argument which shows
(1) ⇐⇒ (2) ⇐⇒ II ↑ EF∗ω(A,B):

II ↑ EFω⇒II ↑ EF∗ω: clear.
II ↑ EF∗ω⇒(2): take closure of the strategy.
(2)⇒II ↑ EFω: counter example, determinacy of EFω,
closure of the strategy of I, a contradiction.
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When EF∗κ(A,B) is non-determined?

Theorem
For κ a cardinal the game EF∗κ(A,B) is equivalent to the game
where at move α

First player I chooses a subset Xα ⊂ A ∪ B of size ≤ κ
Then player II chooses a subset Yα ∈ A ∪ B of size ≤ κ.

and player II wins iff

A ∩
⋃
i<κ

Xi ∪
⋃
i<κ

Yi
∼= B ∩

⋃
i<κ

Xi ∪
⋃
i<κ

Yi .
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Domains of A(µ,S) and B(µ,S)

Let us consider the following construction. Let µ be an
uncountable cardinal and S ⊂ Sµ

ω. In the following µ× ω is
equipped with reversed lexicographical order and pr1 and pr2
are projections respectively onto µ and ω. Then let

A(µ,S) = { f : α+ 1→ µ× ω | α < µ,

f is strictly increasing,

for each n < ω the set pr1[ran(f ) ∩ (µ× {n})]
is ω-closed in µ and is contained in S}
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Domains of A(µ,S) and B(µ,S)

Let us consider the following construction. Let µ be an
uncountable cardinal and S ⊂ Sµ

ω. In the following µ× ω is
equipped with reversed lexicographical order and pr1 and pr2
are projections respectively onto µ and ω. Then let

B(µ,S) = { f : α+ 1→ µ× ω | α < µ,

f is strictly increasing,

for each n < ω the set pr1[ran(f ) ∩ (µ× {n})]
is ω-closed as a subset of µ and if n > 0,

then it is contained in S}.
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Structure on A(µ,S) and B(µ,S)

The structures A(µ,S) and B(µ,S) are L-structures with
domains A(µ,S) and B(µ,S), L = {≤} and f ≤ g ⇐⇒ f ⊂ g.
Their cardinality is 2<µ. Additionally let us add µ unary relations
Pα, α < µ so that

PA(µ,S)
α = {f ∈ A(µ,S) | dom(f ) = α+ 1}

and
PB(µ,S)
α = {f ∈ B(µ,S) | dom(f ) = α+ 1}.

The use of an infinite vocabulary can be avoided here, but the
treatment becomes easier that way.
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Properties of A(µ,S) and B(µ,S)

Denote A = A(µ,S) and B = B(µ,S) and define

Aα = {f ∈ A | ran(f1) ( α}
and Bα = {f ∈ B | ran(f1) ( α}.

Theorem
|Aα| = |Bα| = |α|<µ.
Aα ⊂ Aβ, if α < β. Similar for B.
A = ∪α<µAα and B = ∪α<µBα.
Aα ∼= Bα ⇐⇒ α ∩ S contains an ω-cub set.
Moreover for each increasing and ω-continuous
h : α→ S ∩ α there is an isomorphism Fh : Aα → Bα such
that Fh ⊂ Fh′ whenever h ⊂ h′.
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Connection with the cub-game

Corollary

Let µ > ω1 and S ⊂ Sµ
ω. If player I does not have a winning

strategy in Gω1
ω (S) and S contains arbitrarily long ω-cub sets,

then he does not have one in EF∗ω1

(
A(µ,S),B(µ,S)

)
.

Corollary

Let µ be a cardinal, S ⊂ Sµ
ω and

Ŝ = {α ∈ Sµ
ω1 | α ∩ S contains a cub}. If player II does not have

a winning strategy in
Gω1
ω1

(Ŝ),

then she does not have one in EF∗ω1

(
A(µ,S),B(µ,S)

)
.
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Connection with the cub-game

Corollary

If S ⊂ Sµ
ω satisfies the following three conditions ND1–ND3,

then EF∗(A(µ,S),B(µ,S)) is non-determined.
ND1 Player I does not have a winning strategy in Gω1

ω (S)

ND2 S contains arbitrarily long ω-cub sets.
ND3 Player II does not have a winning strategy in
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When the size of the structures is ℵ2

One can force a generic set G ⊂ ω2, using ordinary Cohen
forcing, which satisfies the conditions ND1-ND3 above. Thus

Theorem
It is consistent that CH and there are such A and B of size ℵ2
that EF∗ω1

(A,B) is non-determined.
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In ZFC?

In ZFC, choosing µ = max{(2ω)+, ω4} one can construct such a
set S ⊂ Sµ

ω that conditions ND1–ND3 hold.

Theorem
There are such A and B of size 2<µ, where
µ = max{(2ω)+, ω4} that EF∗ω1

(A,B) is non-determined.
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Reflection?

As in the case with structures of size ℵ2, one can force such a
set S ⊂ Sµ

ω that conditions ND1–ND3 hold, where µ is above
first singular cardinal, or say µ = ℵ+

ω·ω. Then the game
EF∗λ(A(µ,S),B(µ,S)) is non-determined when λ is regular and
player II wins if λ is limit.

Corollary
It is possible that λ < κ are cardinals and player II has a
winning strategy in EF∗κ(A,B), but does not have a winning
strategy in EF∗λ(A,B).
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