Complexity of Linear Extensions in the Ershov Hierarchy

(Joint work with S. B. Cooper and A. Morphett)

Kyung Il Lee

University of Leeds
Logic Colloquium, 2009

Preliminaries and the Scope.

- We are interested in absolute ${ }^{1}$ descriptive ${ }^{2}$ complexity of a linear extension $<_{B}(\subset \mathbb{N} \times \mathbb{N})$ of a partial ordering $<_{A}$.
- Complexity of a linear ordering $<_{B}$ can be measured in linearising a partial ordering $<_{A}$.
- Some computable approximations could involve the following cases:

${ }^{1}$ not relative
${ }^{2}$ We are not interested in hierarchy or classification via oracle strength in this talk.

Preliminaries and the Scope.

- We are interested in absolute ${ }^{1}$ descriptive ${ }^{2}$ complexity of a linear extension $<_{B}(\subset \mathbb{N} \times \mathbb{N})$ of a partial ordering $<_{A}$.
- Complexity of a linear ordering $<_{B}$ can be measured in linearising a partial ordering $<A$.
- Some computable approximations could involve the following cases:

${ }^{1}$ not relative
${ }^{2}$ We are not interested in hierarchy or classification via oracle strength in this talk.

Preliminaries and the Scope.

- We are interested in absolute ${ }^{1}$ descriptive ${ }^{2}$ complexity of a linear extension $<_{B}(\subset \mathbb{N} \times \mathbb{N})$ of a partial ordering $<_{A}$.
- Complexity of a linear ordering $<_{B}$ can be measured in linearising a partial ordering $<A$.
- Some computable approximations could involve the following cases:
(1) $<_{B}$ is Σ_{1}.
(2) $<_{B}$ is Δ_{2}.
(3) $<_{B}$ is Σ_{n}.
(1) $<_{B}$ is n-c.e.
(2) $<_{B}$ is ω-c.e.
${ }^{1}$ not relative
${ }^{2}$ We are not interested in hierarchy or classification via oracle strength in this talk.

Previous Works (1)

Theorem (Szprilrajn, 1930)

If \mathcal{P} is a partial ordering, then \mathcal{P} has a linear extension.

Theorem (Folklore)

If \mathcal{P} is a computable partial ordering, then \mathcal{P} has a computable linear extension.

Previous Works (2)

- Some other restrictions to preserve: (computably) well-foundedness, (computably) scatteredness, and so forth.

Definition

An ordering is well-founded if it has no infinite descending sequence.

Definition

An ordering is computably well-founded if it has no infinite descending sequence which is computable.

Terminology

- A computable sequence is a computable function $i \mapsto x_{i}$ from \mathbb{N} to \mathbb{N}.
- If x_{0}, x_{1}, \ldots is an infinite computable sequence, then $W=\left\{x_{0}, x_{1}, \ldots\right\}$ is a c.e. set.
- Conversely, every c.e. set W_{e} exhaustively provides a (possibly finite) computable sequence x_{0}, x_{1}, \ldots in order of enumeration.
- W_{e} is a descending sequence if $x_{i}>_{B} x_{i+1}$ for all $i \in \mathbb{N}$.
- Suffices to make sure $x_{i}<_{B} x_{i+1}$ for some i in order to give a computably well-foundedness.

Example

The full binary tree 2^{ω} is a partial ordering which is NOT computably well-founded since it does have computable path.

- Have defined an ordering: $\tau<\sigma$ if σ, τ both in $2^{<\omega}$ and $\sigma \subset \tau$.
- Can define a particular (possibly computable) partial ordering as a subtree of the full binary tree.

Previous Works (3)

Theorem (Bonnet, 1969)

Every well-founded partial ordering has a well-founded linear extension.

Theorem (Rosenstein and Kierstead, 1984)

Every well-founded computable partial ordering has a well-founded computable linear extension.

Previous Works (4)

Theorem (Rosenstein and Statman, 1984)

There is a computably well-founded computable partial ordering with no computable well-founded linear extension which is computable.

Sketch Proof. next page!

Theorem (Rosenstein, 1984)

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is Δ_{2}^{0}.

Theorem (Rosenstein and Statman, 1984)

There is a computably well-founded computable partial ordering with no computable well-founded linear extension which is computable.

Sketch Proof.

Two steps of a strategy due to Rosenstein and Statman:
(1) Construct a computable binary tree (a particular computable partial ordering) with no computable path (computably well-founded).
(2) Prove such partial orderings have no computably well-founded computable linear extensions.
(Need to construct suitable infinite descending computable sequences W's, say.)

Sketch Proof. (continued.)

- Assume $<_{A}$ is a comp. infinite tree with no comp. path.
- Assume $<_{B}$ is comp. lin. ext. of $<_{A}$.

Construction:

(1) Have defined $W^{4}=\left\{a_{0}>_{B} a_{1}>_{B} a_{2}>_{B} a_{3}\right\}$.
(2) Search for immediate predecessors of W^{4} which agrees with $\angle_{A}: P^{4}=\left\{b_{0}, b_{1}, b_{2}\right\}$.
(3) b_{0}, b_{1}, b_{2} are incomparable under $<_{A}$, so set $a_{4} \equiv \max \left\{b_{0}, b_{1}, b_{2}\right\}$ under $<_{B}$.

Sketch Proof. (continued.)

Verification:

(1) Prove $<_{B}$ is computable.
(2) Prove $<_{B}$ is infinite.
(3) Prove $a_{n}>_{B} a_{n+1}$ for all $n \in \mathbb{N}$. (W is an infinite descending sequence.)

Our Questions.

- Expecting negative answers, we ask:
(1) Does there exist a computably well-founded computable partial ordering which has no computably well-founded linear extension that is d-c.e.?
(2) $\cdots n$-c.e.?
(3) $\cdots \omega$-c.e.?
- Or expecting affirmative answers, we ask:
(1) Does any computably well-founded computable partial ordering have a computably well-founded linear extension that is ω-c.e.?
(2) $\cdots n$-c.e.?
(3) $\cdots d$-c.e.?

Our Answers.

- Expecting negative answers, we ask:
(1) Does there exist a computably well-founded computable partial ordering which has no computably well-founded linear extension that is d-c.e.?
(2) \cdots-c.e.? (?)
(3) $\cdots \omega$-c.e.?
(×)
- Or expecting affirmative answers, we ask:
(1) Does any computably well-founded computable partial ordering have a computably well-founded linear extension that is ω-c.e.?
(\checkmark)
(2) $\cdots n$-c.e.?
(3) $\cdots d$-c.e.?
(?)
(×)

Our Results and Progress (1)

Theorem (Work in Progress)

There is a computably well-founded computable partial ordering which has no d.c.e. linear extension which is computably well-founded.
(Approach) Involves elaborating Rosenstein's strategy, defining infinitely many descending sequences (instead of W's), corresponding to the infinite list of possible d.c.e. linear extensions.

Theorem

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is ω-c.e.
\leftarrow These are the main results.

Proof of the Main Result

Theorem

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is ω-c.e.

Sketch Proof.

Let $x_{0}^{e}, x_{1}^{e}, \ldots \in W_{e}$ in order of enumeration.
Requirement: $\left|W_{e}\right|=\infty \Rightarrow x_{i}^{e}<_{B} x_{j}^{e}$ for some $i<j$.
Basic strategy:

- Find $x_{i}, x_{j}(i<j)$ such that $\left.x_{i}\right|_{A} x_{j}$ and set $x_{i}<_{B} x_{j} .\left(<_{A}\right.$ is computably well-founded guarantees that such x_{i}, x_{j} exist.)
- Apply a finite injury argument.
- We can see a bound on the number of mind-changes from the construction.
- It turn out to be at most computably bounded (Our bound is 2^{e} for $<_{B, S} \upharpoonright e$ via some technical parameter.)

Our Results (2)

Theorem

Every computably well-founded Δ_{2} partial ordering has a computably well-founded linear extension which is Δ_{2}.

Theorem (Work in Progress)

Every computably well-founded ω-c.e. partial ordering has a computably well-founded linear extension which is ω-c.e.

References I

Rodney G. Downey.
Computability Theory and Linear Orderings, in Handbook of Recursive Mathematics II.
Elsevier, 1998.
固 Joseph G. Rosenstein. Recursive Linear Orderings.
Orders: description and roles, pp. 465-475, 1984.

