Complexity of Linear Extensions in the Ershov Hierarchy

(Joint work with S. B. COOPER and A. MORPHETT)

KYUNG IL LEE

University of Leeds

Logic Colloquium, 2009

Preliminaries and the Scope.

- We are interested in absolute¹ descriptive² complexity of a linear extension <_B (⊂ N × N) of a partial ordering <_A.
- Complexity of a linear ordering <_B can be measured in linearising a partial ordering <_A.
- Some computable approximations could involve the following cases:

¹not relative

²We are not interested in hierarchy or classification via oracle strength in this talk.

Complexity of Linear Extensions in the Ershov Hierarchy

Preliminaries and the Scope.

- We are interested in absolute¹ descriptive² complexity of a linear extension <_B (⊂ N × N) of a partial ordering <_A.
- Complexity of a linear ordering <_B can be measured in linearising a partial ordering <_A.
- Some computable approximations could involve the following cases:

¹not relative

²We are not interested in hierarchy or classification via oracle strength in this talk.

Complexity of Linear Extensions in the Ershov Hierarchy

Preliminaries and the Scope.

- We are interested in absolute¹ descriptive² complexity of a linear extension <_B (⊂ N × N) of a partial ordering <_A.
- Complexity of a linear ordering <_B can be measured in linearising a partial ordering <_A.
- Some computable approximations could involve the following cases:

¹not relative

²We are not interested in hierarchy or classification via oracle strength in this talk.

Complexity of Linear Extensions in the Ershov Hierarchy

Previous Works (1)

Theorem (Szprilrajn, 1930)

If \mathcal{P} is a partial ordering, then \mathcal{P} has a linear extension.

Theorem (Folklore)

If \mathcal{P} is a computable partial ordering, then \mathcal{P} has a computable linear extension.

Previous Works (2)

 Some other restrictions to preserve: (computably) well-foundedness, (computably) scatteredness, and so forth.

Definition

An ordering is *well-founded* if it has no infinite descending sequence.

Definition

An ordering is *computably well-founded* if it has no infinite descending sequence which is *computable*.

Terminology

- A *computable sequence* is a computable function *i* → *x_i* from ℕ to ℕ.
 - If $x_0, x_1, ...$ is an infinite computable sequence, then $W = \{x_0, x_1, ...\}$ is a c.e. set.

- Conversely, every c.e. set W_e exhaustively provides a (possibly finite) computable sequence x_0, x_1, \ldots in order of enumeration.

- W_e is a *descending sequence* if $x_i >_B x_{i+1}$ for all $i \in \mathbb{N}$.
- Suffices to make sure x_i <_B x_{i+1} for some *i* in order to give a computably well-foundedness.

Example

The full binary tree 2^{ω} is a partial ordering which is NOT computably well-founded since it does have computable path.

- Have defined an ordering: $\tau < \sigma$ if σ, τ both in $2^{<\omega}$ and $\sigma \subset \tau$.
- Can define a particular (possibly computable) partial ordering as a subtree of the full binary tree.

Previous Works (3)

Theorem (Bonnet, 1969)

Every well-founded partial ordering has a well-founded linear extension.

Theorem (Rosenstein and Kierstead, 1984)

Every well-founded computable partial ordering has a well-founded computable linear extension.

Previous Works (4)

Theorem (Rosenstein and Statman, 1984)

There is a computably well-founded computable partial ordering with no computable well-founded linear extension which is computable.

Sketch Proof. next page!

Theorem (Rosenstein, 1984)

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is Δ_{2}^{0} .

Theorem (Rosenstein and Statman, 1984)

There is a computably well-founded computable partial ordering with no computable well-founded linear extension which is computable.

Sketch Proof.

Two steps of a strategy due to Rosenstein and Statman:

- Construct a computable binary tree (a particular computable partial ordering) with no computable path (computably well-founded).
- Prove such partial orderings have no computably well-founded computable linear extensions.
 (Need to construct suitable infinite descending computable sequences W's, say.)

Sketch Proof. (continued.)

- Assume $<_A$ is a comp. infinite tree with no comp. path.
- Assume $<_B$ is comp. lin. ext. of $<_A$.

Construction:

For example, at stage 4:

- Have defined $W^4 = \{a_0 >_B a_1 >_B a_2 >_B a_3\}.$
- Search for immediate predecessors of W^4 which agrees with $<_A$: $P^4 = \{b_0, b_1, b_2\}$.
- 3 b_0, b_1, b_2 are incomparable under $<_A$, so set $a_4 \equiv \max\{b_0, b_1, b_2\}$ under $<_B$.

Sketch Proof. (continued.)

Verification:

- Prove $<_B$ is computable.
- 2 Prove $<_B$ is infinite.
- Prove a_n >_B a_{n+1} for all n ∈ N.
 (W is an infinite descending sequence.)

Our Questions.

- Expecting negative answers, we ask:
 - Does there exist a computably well-founded computable partial ordering which has no computably well-founded linear extension that is *d*-c.e.?
 - 2 · · · *n*-c.e.?
 - 3 · · · ω-c.e.?
- Or expecting affirmative answers, we ask:
 - Does any computably well-founded computable partial ordering have a computably well-founded linear extension that is ω-c.e.?
 - 2 · · · *n*-c.e.?
 - 3 ··· *d*-c.e.?

Our Answers.

- Expecting negative answers, we ask:
 - Obes there exist a computably well-founded computable partial ordering which has no computably well-founded linear extension that is *d*-c.e.? (√)

- Or expecting affirmative answers, we ask:
 - Does any computably well-founded computable partial ordering have a computably well-founded linear extension that is *w*-c.e.?
 (√)

Our Results and Progress (1)

Theorem (Work in Progress)

There is a computably well-founded computable partial ordering which has no d.c.e. linear extension which is computably well-founded.

(Approach) Involves elaborating Rosenstein's strategy, defining infinitely many descending sequences (instead of *W*'s), corresponding to the infinite list of possible d.c.e. linear extensions.

Theorem

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is ω -c.e.

 \leftarrow These are the main results.

Proof of the Main Result

Theorem

Every computably well-founded computable partial ordering has a computably well-founded linear extension which is ω -c.e.

Sketch Proof.

Let $x_0^e, x_1^e, \ldots \in W_e$ in order of enumeration.

Requirement: $|W_e| = \infty \Rightarrow x_i^e <_B x_j^e$ for some i < j.

Basic strategy:

- Find x_i, x_j (i < j) such that x_i |_A x_j and set x_i <_B x_j. (<_A is computably well-founded guarantees that such x_i, x_j exist.)
- Apply a finite injury argument.
- We can see a bound on the number of mind-changes from the construction.
- It turn out to be at most computably bounded (Our bound is 2^e for $<_{B,s} \upharpoonright e$ via some technical parameter.)

Our Results (2)

Theorem

Every computably well-founded Δ_2 partial ordering has a computably well-founded linear extension which is Δ_2 .

Theorem (Work in Progress)

Every computably well-founded ω -c.e. partial ordering has a computably well-founded linear extension which is ω -c.e.

Rodney G. Downey.

Computability Theory and Linear Orderings, in Handbook of Recursive Mathematics II. Elsevier. 1998.

Joseph G. Rosenstein. Recursive Linear Orderings. Orders: description and roles, pp. 465-475, 1984.