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Preliminaries and the Scope.

We are interested in absolute1 descriptive2 complexity of a
linear extension <B (⊂ N× N) of a partial ordering <A.
Complexity of a linear ordering <B can be measured in
linearising a partial ordering <A.
Some computable approximations could involve the
following cases:

1 <B is Σ1.
2 <B is ∆2.
3 <B is Σn.

...

1 <B is n-c.e.
2 <B is ω-c.e.

...
1not relative
2We are not interested in hierarchy or classification via oracle strength in

this talk.
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Previous Works (1)

Theorem (Szprilrajn, 1930)
If P is a partial ordering, then P has a linear extension.

Theorem (Folklore)
If P is a computable partial ordering, then P has a computable
linear extension.
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Previous Works (2)

Some other restrictions to preserve: (computably)
well-foundedness, (computably) scatteredness, and so
forth.

Definition
An ordering is well-founded if it has no infinite descending
sequence.

Definition
An ordering is computably well-founded if it has no infinite
descending sequence which is computable.
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Terminology

A computable sequence is a computable function i 7→ xi
from N to N.
– If x0, x1, . . . is an infinite computable sequence, then
W = {x0, x1, . . .} is a c.e. set.
– Conversely, every c.e. set We exhaustively provides a
(possibly finite) computable sequence x0, x1, . . . in order of
enumeration.
We is a descending sequence if xi >B xi+1 for all i ∈ N.
Suffices to make sure xi <B xi+1 for some i in order to give
a computably well-foundedness.
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Example
The full binary tree 2ω is a partial ordering which is NOT
computably well-founded since it does have computable path.
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Have defined an ordering: τ < σ if σ, τ both in 2<ω and
σ ⊂ τ .
Can define a particular (possibly computable) partial
ordering as a subtree of the full binary tree.
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Previous Works (3)

Theorem (Bonnet, 1969)
Every well-founded partial ordering has a well-founded linear
extension.

Theorem (Rosenstein and Kierstead, 1984)
Every well-founded computable partial ordering has a
well-founded computable linear extension.
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Previous Works (4)

Theorem (Rosenstein and Statman, 1984)
There is a computably well-founded computable partial
ordering with no computable well-founded linear extension
which is computable.

Sketch Proof. next page!

Theorem (Rosenstein, 1984)
Every computably well-founded computable partial ordering
has a computably well-founded linear extension which is ∆0

2.

Complexity of Linear Extensions in the Ershov Hierarchy KYUNG IL LEE 8/17



Preliminaries and Previous Works Our Questions, Results, and Progress

Theorem (Rosenstein and Statman, 1984)
There is a computably well-founded computable partial
ordering with no computable well-founded linear extension
which is computable.

Sketch Proof.
Two steps of a strategy due to Rosenstein and Statman:

1 Construct a computable binary tree (a particular
computable partial ordering) with no computable path
(computably well-founded).

2 Prove such partial orderings have no computably
well-founded computable linear extensions.
(Need to construct suitable infinite descending computable
sequences W ’s, say.)
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Sketch Proof. (continued.)
Assume <A is a comp. infinite tree with no comp. path.
Assume <B is comp. lin. ext. of <A.

Construction:
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b2For example, at stage 4:

1 Have defined W 4 = {a0 >B a1 >B a2 >B a3}.
2 Search for immediate predecessors of W 4 which agrees

with <A: P4 = {b0,b1,b2}.
3 b0,b1,b2 are incomparable under <A, so set

a4 ≡ max{b0,b1,b2} under <B.
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Sketch Proof. (continued.)
Verification:

1 Prove <B is computable.
2 Prove <B is infinite.
3 Prove an >B an+1 for all n ∈ N.

(W is an infinite descending sequence.)

�
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Our Questions.

Expecting negative answers, we ask:
1 Does there exist a computably well-founded computable

partial ordering which has no computably well-founded
linear extension that is d-c.e.?

2 · · · n-c.e.?
3 · · · ω-c.e.?

Or expecting affirmative answers, we ask:
1 Does any computably well-founded computable partial

ordering have a computably well-founded linear extension
that is ω-c.e.?

2 · · · n-c.e.?
3 · · · d-c.e.?
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Our Answers.

Expecting negative answers, we ask:
1 Does there exist a computably well-founded computable

partial ordering which has no computably well-founded
linear extension that is d-c.e.? (X)

2 · · · n-c.e.? (?)
3 · · · ω-c.e.? (×)

Or expecting affirmative answers, we ask:
1 Does any computably well-founded computable partial

ordering have a computably well-founded linear extension
that is ω-c.e.? (X)

2 · · · n-c.e.? (?)
3 · · · d-c.e.? (×)
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Our Results and Progress (1)

Theorem (Work in Progress)
There is a computably well-founded computable partial
ordering which has no d.c.e. linear extension which is
computably well-founded.

(Approach) Involves elaborating Rosenstein’s strategy, defining
infinitely many descending sequences (instead of W ’s),
corresponding to the infinite list of possible d.c.e. linear
extensions.

Theorem
Every computably well-founded computable partial ordering
has a computably well-founded linear extension which is ω-c.e.

← These are the main results.
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Proof of the Main Result

Theorem
Every computably well-founded computable partial ordering
has a computably well-founded linear extension which is ω-c.e.

Sketch Proof.
Let xe

0 , x
e
1 , . . . ∈We in order of enumeration.

Requirement: |We| =∞⇒ xe
i <B xe

j for some i < j .
Basic strategy:

Find xi , xj (i < j) such that xi |A xj and set xi <B xj . (<A is
computably well-founded guarantees that such xi , xj exist.)
Apply a finite injury argument.
We can see a bound on the number of mind-changes from
the construction.
It turn out to be at most computably bounded (Our bound is
2e for <B,s� e via some technical parameter.) �
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Our Results (2)

Theorem
Every computably well-founded ∆2 partial ordering has a
computably well-founded linear extension which is ∆2.

Theorem (Work in Progress)
Every computably well-founded ω-c.e. partial ordering has a
computably well-founded linear extension which is ω-c.e.
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