Decidable Boolean algebras of elementary characteristics (1,0,1)

Margarita Leontyeva

Department of Mechanics and Mathematics Novosibirsk State University Russian Federation

Scientific adviser — Pavel E. Alaev

Definition

A computable Boolean algebra is said to be n-constructive if there exists an algorithm determining whether the given tuple satisfies given finite Σ_n -formula.

Definition

A strongly constructive Boolean algebra is one for which such an algorithm exists for all formulas of the predicate calculus.

Definition

Boolean algebra is decidable if there exists its strongly constructive isomorphic copy.

a - atom, if $a \neq 0$ and $\forall b(b < a \rightarrow b = 0)$. At (\mathfrak{A}) - set of atoms of \mathfrak{A} .

a – atomic element, if $\forall x \leq a (x \neq 0 \rightarrow (\exists y \leq x (y \in At(\mathfrak{A}))))$. Atm (\mathfrak{A}) – ideal of atomic elements of \mathfrak{A} .

a - atomless element, if $\forall x \leq a \ (x \notin At(\mathfrak{A}))$. Als (\mathfrak{A}) - ideal of atomless elements of \mathfrak{A} .

 $\mathsf{E}(\mathfrak{A}) = \mathsf{Atm}(\mathfrak{A}) + \mathsf{Als}(\mathfrak{A}) - \mathsf{Ershov-Tarski}$ ideal.

$At(\mathfrak{A}), Als(\mathfrak{A}), Atm(\mathfrak{A}), E(\mathfrak{A})$

 $ch(\mathfrak{A}) = (1,0,1) \Leftrightarrow \mathfrak{A}/\mathsf{E}$ – nontrivial atomless Boolean algebra.

A B A A B A

 $S \subseteq \{At(\mathfrak{A}), Als(\mathfrak{A}), Atm(\mathfrak{A}), E(\mathfrak{A})\}$ Is \mathfrak{A} decidable if predicates from S are computable?

$$\begin{split} S &= \{ \mathsf{At}(\mathfrak{A}), \mathsf{Als}(\mathfrak{A}) \} \Rightarrow \mathsf{yes!} \\ S &= \{ \mathsf{At}(\mathfrak{A}) \} \Rightarrow \mathsf{no} \\ S &= \{ \mathsf{Als}(\mathfrak{A}), \mathsf{Atm}(\mathfrak{A}), \mathsf{E}(\mathfrak{A}) \} \Rightarrow \mathsf{nc} \end{split}$$

Unconsidered cases: $S = \{At(\mathfrak{A}), Atm(\mathfrak{A})\} \Rightarrow ?$ $S = \{At(\mathfrak{A}), E(\mathfrak{A})\} \Rightarrow ?$

Theorem

Let \mathfrak{A} be a computable Boolean algebra of elementary characteristics (1, 0, 1). If $At(\mathfrak{A})$ and $Atm(\mathfrak{A})$ are computable then \mathfrak{A} is decidable.

Theorem

There exists a computable Boolean algebra \mathfrak{A} of elementary characteristics (1, 0, 1) with computable $At(\mathfrak{A})$ and $E(\mathfrak{A})$ which is not decidable.

Description of Δ_6^0 -computable Boolean algebras

Let
$$T = (Atm \rightarrow F) + Atm$$
,
where $Atm \rightarrow F = \{x | \forall z \le x (z \in F \lor z \notin Atm)\}$
 $F - Frechet ideal.$

Theorem

 \mathfrak{A} is Δ_6^0 -computable Boolean algebra if and only if there exists a computable Boolean algebra \mathfrak{C} such that $\mathfrak{C}/T \cong \mathfrak{A}$.