Computational intension, denotation and propositional intention in the languages of acyclic recursion

Roussanka Loukanova

Logic Colloquium 2009 Sofia

August 1, 2009

Moschovakis (2003–2006): L^λ_{ar} and L^λ_r have twofold semantics:

Syntax of L_{ar}^{λ} (L_{r}^{λ}) \Longrightarrow Referential Intensions (Algorithms) \Longrightarrow Denotations

Semantics of $L_{ar}^{\lambda}(L_{r}^{\lambda})$

- Applications of L_{ar}^{λ}
 - computational semantics of NL
 - Antecedent-anaphora relations
 - Quantifier scope underspecification
 - syntax-semantics interface for NLP

• $L_{ar}^{\lambda} \subset L_{exar}^{\lambda}$ (Montague (70s) \prec Thomason (1980) \prec Muskens (2005))

For each propositional term A : p

den(A): T-intention

the propositional denotation of A (per se)

2 den $(\mathcal{E}(A))$:

truth-functional denotation, the extension of A (int., the set of all states in which den(A) holds)

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Syntax of L_{ar}^{a} and L_{exar}^{b} and L_{exar}^{b} and L_{exar}^{b} and L_{ar}^{b} and L_{ar}

Languages of Acyclic Recursion: $L_{ar}^{\lambda} / L_{exar}^{\lambda}$

Propositions vs. Extensions of Propositions Ideas from

• T-intentional Logic of Propositions: ideas by Thomason (1980), Muskens (2005)

The set *Types* of $L_{ar}^{\lambda} / L_{exar}^{\lambda}$:

$$\sigma :\equiv e \mid t \mid p \mid s \mid (\tau_1 \rightarrow \tau_2)$$
 (Types)

Some abbreviations:

- $\widetilde{e} \equiv (s \rightarrow e)$ (the type of individual concepts)
- $\bullet ~\widetilde{t} \equiv (s \rightarrow t) ~~(\text{the type of state extensions of propositions})$
- $\bullet ~\widetilde{p} \equiv (s \rightarrow p) ~~(\text{the type of situated propositions})$
- $\widetilde{\tau} \equiv (s \rightarrow \tau)$, where $\tau \in Types$
- $au_1 imes au_2 o au \equiv (au_1 o (au_2 o au))$, where $au_1, au_2, au \in Types$

 $\begin{array}{c} \mbox{Introduction}\\ \mbox{Syntax of L_{ar}^{λ} and L_{car}^{λ} and L_{c

Syntax of L_{ar}^{λ} and L_{exar}^{λ}

- Constants: K_τ = {c₀^τ,..., c_{kτ}^τ}
 a special constant, E ∈ K_{p→t}: E(P): t̃ — the set of states (that have information) validating P: p̃
- $PureVars_{\tau} = \{v_0^{\tau}, v_1^{\tau}, \ldots\}, \quad RecVars_{\tau} = \{p_0^{\tau}, p_1^{\tau}, \ldots\}$

• Terms of
$$L_{ar}^{\lambda}$$
 (L_{exar}^{λ})
 $A :\equiv c^{\tau} : \tau \mid x^{\tau} : \tau \mid B^{(\sigma \to \tau)}(C^{\sigma}) : \tau \mid \lambda v^{\sigma}(B^{\tau}) : (\sigma \to \tau)$
 $\mid A_{0}^{\sigma}$ where $\{p_{1}^{\sigma_{1}} := A_{1}^{\sigma_{1}}, \dots, p_{n}^{\sigma_{n}} := A_{n}^{\sigma_{n}}\} : \sigma$

where $\{p_1 := A_1, \dots, p_n := A_n\}$ is an acyclic system

i.e., there is a function $rank : \{p_1, \ldots, p_n\} \longrightarrow \mathbb{N}$ such that, for all $i, j \in \{1, \ldots, n\}$:

if p_j occurs free in A_i , then $rank(p_j) < rank(p_i)$.

Canonical Form Theorem: For each term A, there is a unique, up to congruence, irreducible term denoted by cf(A), such that:

•
$$cf(A) \equiv A$$
 or $cf(A) \equiv A_0$ where $\{p_1 := A_1, \dots, p_n := A_n\}$
• $A \Rightarrow cf(A)$

Referential Synonymy Theorem: Two terms A, B are referentially synonymous, $A \approx B$, iff there are explicit, irreducible terms (of appropriate types), $A_0, A_1, \ldots, A_n, B_0, B_1, \ldots, B_n$, $n \ge 0$, such that:

- $A \Rightarrow_{cf} A_0$ where $\{p_1 := A_1, \ldots, p_n := A_n\}$,
- $B \Rightarrow_{cf} B_0$ where $\{p_1 := B_1, \ldots, p_n := B_n\}$,
- $\models A_i = B_i$ (i = 0, ..., n), i.e., den $(A_i)(g) = den(B_i)(g)$ for all variable assignments g.

Introduction Syntax of L³, and L³_{Car} Applications to CompSem of NL T-intention Vision: The Big Picture for Applications to NL SynSem

NL Category	L^{λ}_{exar} Constants	L^λ_{exar} Type
PureObj	0, 1, 2,	e
NP	john, mary,	ẽ
IV	run, smile,	$\left(\widetilde{e} \to \widetilde{p}\right)$
CN	$man, woman, dog, \ldots$	$\left(\widetilde{e} \to \widetilde{p}\right)$
TV	like, love,	$\left(\widetilde{e} \rightarrow \left(\widetilde{e} \rightarrow \widetilde{p} \right) \right)$
ATV	believe, knows,	$\left(\widetilde{e} ightarrow \left(\widetilde{p} ightarrow \widetilde{p} ight) ight)$
QNP	everything, something	$((\widetilde{e} \rightarrow \widetilde{p}) \rightarrow \widetilde{p})$
Det	every, some, a,	$\left(\widetilde{e} ightarrow \widetilde{p} ight) imes \left(\widetilde{e} ightarrow \widetilde{p} ight) ightarrow \widetilde{p}$
Coord	and, or, if	$\left(\left(\widetilde{p} \to \widetilde{p}\right) \to \widetilde{p}\right)$
SNeg	not	$\left(\widetilde{p} \to \widetilde{p} ight)$

Table: Examples of L_{exar}^{λ} constants and types rendering NL expressions and lexemes (words)

Different kinds of antecedent–anaphora relations by L_{ar}^{λ}

Strict, reflexive anaphora via co-indexing is required in some cases.

For ex., in NL (spoken by humans): the syntax-semantics interface of reflexive pronouns, like "herself", can be regulated by co-indexing arguments, as in options (1a)-(1b), but not by (1c).

$$\begin{array}{ll} \text{Mary likes herself.} \xrightarrow{\text{render}} & \text{three options:} \\ \lambda x \ \textit{like}(x, x)(m) \ \text{where } \{m \mathrel{\mathop:}= mary\} & (\lambda \ \text{co-index}) \ (1a) \\ \approx \ \textit{like}(m, m) \ \text{where } \{m \mathrel{\mathop:}= mary\} & (\text{ar co-index}) \\ & (1b) \\ \approx \ \textit{like}(m_1, m_2) \ \text{where } \{m_2 \mathrel{\mathop:}= m_1, \ m_1 \mathrel{\mathop:}= mary\} & (1c) \end{array}$$

Reflexive vs. irreflexive antecedent-anaphora relations

- Co-indexing, as in (2a), is not good for non-reflexive pronouns
- Underspecified arguments: (2b)
- Resolution of underspecification by the context: (2c).

John loves his wife and he honors her. $\xrightarrow{\text{render}}$ options:

$$\begin{bmatrix} L \& H \end{bmatrix} \text{ where } \{L := love(j, w), H := honors(j, w), \\ j := john, w := wife(j)\}$$
(ar co-index)

$$\begin{bmatrix} L \& H \end{bmatrix} \text{ where } \{L := love(j, w), H := honors(h_1, h_2), \qquad (2b) \\ j := john, w := wife(j) \} \qquad (underspec)$$

$$\begin{bmatrix} L \& H \end{bmatrix} \text{ where } \{L := love(j, w), H := honors(h_1, h_2), \qquad (2c) \\ h_1 := j, j := john, h_2 := w, w := wife(j) \} \quad (\text{no } \lambda\text{-term}) \end{cases}$$

$$\xrightarrow{\text{render}} \text{like(john)(father_of(mary))} : \widetilde{p}$$
(3b)

$$\Rightarrow_{cf} like(j)(f) \text{ where } \{j := john, m := mary, \qquad (3c) \\ f := father_of(m)\}$$

$$\mathcal{E}(like(john)(father_of(mary)))$$
 : \tilde{t} (4a)

$$\Rightarrow \mathcal{E}(P) \text{ where } \{P := like(john)(father_of(mary))\}$$
(4b)

$$\Rightarrow_{cf} \mathcal{E}(P) \text{ where } \{P := like(j)(f), j := john, m := mary, (4c) \\ f := father_of(m)\}$$

Informally: For any d: s,

 $den(\mathcal{E}(P)(d)) = 1 \text{ iff the proposition } den(like(j)(f)(d)) \text{ holds}$ (5) iff in den(d), the situated prop. den(like(j)(f)) is true(6)

One more clause to the definition of Canonical Forms

For every
$$A : \tilde{p}$$
, such that
 $cf(A) \equiv A_0$ where $\{p_1 := A_1, \dots, p_n := A_n\}$,
 $cf(\exists xA) :\equiv \exists xp(x)$ where $\{p := \lambda xA'_0, p'_1 := \lambda xA'_1, \dots, p'_n := \lambda xA'_n\}$
 $(7a)$
 $cf(\forall xA) :\equiv \forall xp(x)$ where $\{p := \lambda xA'_0, p'_1 := \lambda xA'_1, \dots, p'_n := \lambda xA'_n\}$
 $(7b)$
where for all $i = 1, \dots, n$, p'_i is a fresh location, and

for all
$$i = 0, \ldots, n$$
, $A'_i :\equiv A_i \{ p_1 :\equiv p'_1(x), \ldots, p_n :\equiv p'_n(x) \}$.

Introduction Syntax of L²_{dr} and L²_{cor} Applications to CompSem of NL **T-intention** Vision: The Big Picture for Applications to NL SynSem

Let
$$C \in \{and, or, if, \}$$
,
 $Q, Q_i : \tilde{p}, \quad cf(Q) = Q_0$ where $\{\vec{q} := \vec{Q}\}$, and
 $cf(Q_i) = Q_{i,0}$ where $\{\vec{q_i} := \vec{Q_i}\}$, for $i \in \{1, 2\}$. By the def of the
canonical forms:

$$cf(\mathcal{E}(C(Q_1, Q_2))) \equiv \mathcal{E}(Q) \text{ where } \{Q := C(q_1, q_2),$$
(8a)

$$q_1 := Q_{1,0}, q_2 := Q_{2,0},$$

$$\vec{q_1} := \vec{Q_1}, \vec{q_2} := \vec{Q_2} \}$$

$$cf(\mathcal{E}(not(Q)) \equiv \mathcal{E}(N) \text{ where } \{N := not(q), q := Q,$$
(8b)

$$\vec{q} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\neg vQ)) = \mathcal{E}(N) \text{ where } \{N := \neg vQ, \vec{q_1} := \vec{Q} \}$$

$$cf(\mathcal{E}(\exists xQ)) \equiv \mathcal{E}(N) \text{ where } \{N := \exists xQ_0, \vec{q} := \vec{Q}\}$$
(8c)

$$\operatorname{cf}(\mathcal{E}(\forall xQ)) \equiv \mathcal{E}(N)$$
 where $\{N := \forall xQ_0, \vec{q} := \vec{Q}\}$ (8d)

By (8a)-(8d), the truth evaluation by \mathcal{E} doesn't proceed compositionally through the propositional sub-terms of the logical connectors.

Introduction Syntax of L_{ar} and L_{var} Applications to CompSem of NL **T-intention** Vision: The Big Picture for Applications to NL SynSem

Definition

$$\begin{split} \mathcal{E}(not(X)) \Rightarrow_{T} \neg(p) \text{ where } \{p := \mathcal{E}(X)\} & (9a) \\ \mathcal{E}(and(X_{1}, X_{2})) \Rightarrow_{T} (p_{1} \& p_{2}) \text{ where } \{p_{1} := \mathcal{E}(X_{1}), p_{2} := \mathcal{E}(X_{2})\} & (9b) \\ \mathcal{E}(or(X_{1}, X_{2})) \Rightarrow_{T} (p_{1} \lor p_{2}) \text{ where } \{p_{1} := \mathcal{E}(X_{1}), p_{2} := \mathcal{E}(X_{2})\} & (9c) \\ \mathcal{E}(if(X_{1}, X_{2})) \Rightarrow_{T} (p_{1} \rightarrow p_{2}) \text{ where } \{p_{1} := \mathcal{E}(X_{1}), p_{2} := \mathcal{E}(X_{2})\} & (9d) \\ \mathcal{E}(some(X_{1}, X_{2})) \Rightarrow_{T} \exists x(p_{1}(x) \& p_{2}(x)) \text{ where } \{p_{1} := \lambda x \mathcal{E}(X_{1}(x)), p_{2} := \lambda x \mathcal{E}(X_{2}(x)) & (x \text{ is fresh}) & (9e) \\ \mathcal{E}(every(X_{1}, X_{2})) \Rightarrow_{T} \forall x(p_{1}(x) \rightarrow p_{2}(x)) \text{ where } \{p_{1} := \lambda x \mathcal{E}(X_{1}(x)), p_{2} := \lambda x \mathcal{E}(X_{2}(x)) & (x \text{ is fresh}) & (9f) \\ \mathcal{E}(is(X_{1}, X_{2})) \Rightarrow_{T} \lambda d(p_{1}(d) = p_{2}(d)) \text{ where } & (9g) \\ \{p_{i} := \lambda dX_{i}(d) \mid i \in \{1, 2\}\}(d : s, \text{ is fresh}) \end{split}$$

Note: The def. should have cases w.r.t. the immediate terms.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Syntax of L_{qr}^{λ} and L_{eqr}^{λ} \\ \mbox{Applications to CompSem of NL} \\ \hline T-intention$ \\ \hline T-intention$ \\ \hline $Vision: The Big Picture for Applications to NL SynSem \\ \hline \end{tabular}$

Definition

For any non-logical constant $R : (\sigma_1 \times \ldots \times \sigma_n \to \widetilde{p})$ and any immediate terms $X_1 : \sigma_1, \ldots, X_n : \sigma_n$

$$\mathcal{E}(R(X_1,\ldots,X_n)) \Rightarrow_T \lambda x_1 \ldots \lambda x_n \mathcal{E}(r(x_1,\ldots,x_n))(X_1,\ldots,X_n)$$

where $\{r := R\}$ (10)

The term $\lambda x_1 \dots \lambda x_n \mathcal{E}(r(x_1, \dots, x_n))$ represents the characteristic function of the relation denoted by r, and thus, by R. While

$$\mathcal{E}(R(X_1,\ldots,X_n)) \Rightarrow \mathcal{E}(r) \text{ where } \{r := R(X_1,\ldots,X_n)\}$$
(11)

$$\mathcal{E}(like(j)(m)) \Rightarrow_{T} \lambda x_1 \lambda x_2 \mathcal{E}(r(x_1, x_2))(j, m) \text{ where } \{r := like\}$$
(12)

$$\mathcal{E}(believe(j)(q)) \Rightarrow \mathcal{E}(r) \text{ where } \{r := believe(j,q)\}$$
(13a)
$$\mathcal{E}(believe(j)(q)) \Rightarrow_{\mathcal{T}} \lambda x_1 \lambda x_2 \mathcal{E}(r(x_1, x_2))(j,q) \text{ where } \{r := believe\}$$
(13b)

Definition

For any attitude constant B and any assignment system A_0 where $\{p_1 := A_1, \dots, p_i := A_i, \dots, p_j := A_j, \dots, p_n := A_n\}$,

if B(*u*, p_j, *v*) occurs in some A_i, then p_j is in the scope of B
if p_k is in the scope of B, and p_r occurs in A_k, then p_r is in the scope of B.

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Syntax of $L_{\Delta r}^{\lambda}$ and L_{exar}^{λ} \\ \mbox{Applications to CompSem of NL} \\ \hline T-intention$ \\ \hline T-intention$ \\ \hline $Vision: The Big Picture for Applications to NL SynSem \\ \hline \end{tabular}$

Restricted Compositionality of $\mathcal E$

Let
$$(A_0 \text{ where } \{p_1 := A_1, \dots, p_n := A_n\}) : \widetilde{p}$$
 be such that

- it is irreducible, and
- 2 A_{i_1}, \ldots, A_{i_k} are all the terms, such that $\mathcal{E}(A_j) \Rightarrow_T B_j$ and p_j is not in the scope of any attitude constant $(j \in \{0, \ldots, n\})$. Then, $\mathcal{E}(A_0$ where $\{p_1 := A_1, \ldots, p_n := A_n\}) \Rightarrow_T cf(E)$, where

• if
$$A_0$$
 is a proper term

$$E \equiv (\mathcal{E}(p_0) \text{ where } \{ p_0 := A_0, p_1 := A_1 \dots, p_n := A_n \}) \{ A_{i_1} :\equiv B_{i_1}, \dots, A_{i_k} :\equiv B_{i_k} \}$$
(14a)

2) if
$$A_0$$
 is immediate (i.e., not a proper term)

$$\Xi \equiv (\mathcal{E}(A_0) \text{ where } \{p_1 := A_1 \dots, p_n := A_n\}) \{A_{i_1} :\equiv B_{i_1}, \dots, \dots, A_{i_k} :\equiv B_{i_k}\}$$
(14b)

John believes that Mary is happy.render(15a)
$$A \equiv believe(john)(happy(mary)) : \widetilde{p}$$
(15b) $\Rightarrow_{cf} believe(j)(q)$ where $\{m := mary, j := john,$ $q := happy(m)\}$ (15c)

$$\mathcal{E}(believe(john)(happy(mary))) : \widetilde{t}$$
(16a)

$$\Rightarrow \mathcal{E}(P) \text{ where } \{P := believe(john)(happy(mary))\}$$
(16b)

$$\Rightarrow_{cf} \mathcal{E}(P) \text{ where } \{P := believe(j)(q), m := mary, j := john, q := happy(m)\}$$
(16c)

$$cf(A) \Rightarrow_{T} \mathcal{E}(P) \text{ where } \{P := \lambda x_{1} \lambda x_{2} \mathcal{E}(r(x_{1}, x_{2}))(j, q), \\ m := mary, j := john, \\ r := believe, q := happy(m)\}$$
(17)

 $\begin{array}{c} \mbox{Introduction} \\ \mbox{Syntax of L_{gr}^{\rightarrow} and L_{egr}^{\rightarrow} \\ \mbox{Applications to CompSem of NL} \\ \mbox{T-intention} \\ \mbox{Vision: The Big Picture for Applications to NL SynSem} \end{array}$

The Big Picture in NLP: Simplified and Approximated, but Realistic

• Semantics of NL: via "logical forms"

 $\underbrace{ \underset{\text{Syn of NL} \iff \text{Syn of } L^{\lambda}_{ar}/L^{\lambda}_{r} \Longrightarrow \text{Canonical Terms} \Longrightarrow \text{Denotations}}_{\text{SynSem}}$

Translation

Lexicon of NL₁ \iff Syn of NL₁ $\xrightarrow{\text{render}} L_{ar}^{\lambda}/L_{r}^{\lambda}$ Terms \Downarrow Reduction $L_{ar}^{\lambda}/L_{r}^{\lambda}$ Canonical Terms \downarrow (possible modifications)

Lexicon of NL₂ \iff Syn of NL₂ $\stackrel{\text{render}^{-1}}{\longleftarrow} L^{\lambda}_{ar}$ Canonical Terms

The Start