Computational intension, denotation and
propositional intention in the languages of acyclic
recursion

Roussanka Loukanova

Logic Colloquium 2009
Sofia

August 1, 2009

Introduction

@ Moschovakis (2003-2006): L), and L} have twofold
semantics:
Syntax of L2, (L}) = Referential Intensions (Algorithms) = Denotations

Semantics of L (L})

o Applications of L),
@ computational semantics of NL
@ Antecedent—anaphora relations
@ Quantifier scope underspecification
@ syntax-semantics interface for NLP

o L) C L)

exar

(Montague (70s) < Thomason (1980) < Muskens (2005))

For each propositional term A : p
© den(A): T-intention
the propositional denotation of A (per se)
Q den(E(A)):
truth-functional denotation, the extension of A (int., the set of
all states in which den(A) holds))

A A
Syntax of L7, and LZ .

Languages of Acyclic Recursion:

Propositions vs. Extensions of Propositions Ideas from

@ T-intentional Logic of Propositions:
ideas by Thomason (1980), Muskens (2005)

The set Types of L), / L2

exar-

oc=el|t|p|s|(mn— m) (Types)
Some abbreviations:

@ e=(s—e) (the type of individual concepts)

o t=(s—1t) (the type of state extensions of propositions)
@ p=(s—p) (the type of situated propositions)

e T=(s—7T), whereT € Types

e xm—1=(nn— (n—7)), where ,7,7 € Types

Syntax of L and L)

exar

A A
Syntax of L7, and LZ .

o Constants: K. = {cf,...,c} }
 a special constant, & € K5_z
E(P) : t — the set of states (that have information) validating
P:p

® PureVars, = {vj,v{,...}, RecVars, ={pj,p],...}

@ Terms of Lé, (Lﬁxa,)

A=c 7| x| BOTI(CO) i [A (BT): (0 —)
| Agwhere {p{* == AT",... . pp" == A"} 10

where {p1 := A1,...,pn = An} is an acyclic system
i.e., there is a function rank : {p1,..., pn} — N such that, for all
i,je{l,...,n}

if pj occurs free in A;, then rank(p;) < rank(p;).

A A
Syntax of L7, and LZ .

Canonical Form Theorem: For each term A, there is a unique, up
to congruence, irreducible term denoted by cf(A), such that:

Q cf(A)=A or cf(A) = Agwhere{p1 .= A1,...,pn:=An}
Q A= cf(A)
Referential Synonymy Theorem: Two terms A, B are referentially
synonymous, A =~ B, iff there are explicit, irreducible terms (of
appropriate types), Ao, A1,...,An, Bo,B1,...,Bn, n >0, such
that:
o A= Agwhere{p; := A1,...,pn = An},
® B = Bywhere{p; :== Bi,...,pn:= Bn},
@ =A =B (i=0,...,n), ie., den(A;)(g) = den(B;)(g) for
all variable assignments g.

A A
Syntax of L7, and LZ .

NL Category L., Constants L., Type
PureOb;j 0,1,2,... e

NP john, mary, ... e

v run,smile, . .. (e —p)

CN man, woman,dog,... (€ —p)

TV like, love, . .. (e—(e—p))
ATV believe, knows, . .. (e—=(pP—p)
QNP everything, something ((¢ — p) — p)
Det every,some, a, . .. (e—p)x(e—p) —p
Coord and, or, if (p—pP) —p)
SNeg not (P—p)

A

exar

Table: Examples of L
and lexemes (words)

constants and types rendering NL expressions

Applications to CompSem of NL Antecedent—anaphora relations

Different kinds of antecedent—anaphora relations by L2

@ Strict, reflexive anaphora via co-indexing is required in some
cases.

For ex., in NL (spoken by humans): the syntax-semantics interface
of reflexive pronouns, like “herself”, can be regulated by
co-indexing arguments, as in options (1a)-(1b), but not by (1c).

render

Mary likes herself. —— three options:
Ax like(x, x)(m) where {m := mary} (X co-index) (1a)
~ like(m, m) where {m := mary} (ar co-index)

(1b)
% like(my, my) where {my := my, my := mary} (1c)

Applications to CompSem of NL Antecedent—anaphora relations

Reflexive vs. irreflexive antecedent—anaphora relations

@ Co-indexing, as in (2a), is not good for non-reflexive pronouns
@ Underspecified arguments: (2b)
@ Resolution of underspecification by the context: (2c).

. d .
John loves his wife and he honors her. “—— options:

|L& H| where {L := love(j, w), H := honors(j, w), (2a)

J = john, w := wife(j)} (ar co-index)
L& H] where {L := love(j, w), H := honors(hy, h), (2b)

J = john, w := wife(j)} (underspec)
L& H] where {L := love(j, w), H := honors(hy, hy), (2¢)

hi :=j, j = john, hy := w, w := wife(j)} (no A-term)

L-TYPE P

SEM
TERM

(no) S

T-HEAD
WHERE

[Ayi(some(d(yk)) (h(y)))](K)
{k = kim,

d = \yydog,

h:= AykAxahug(xa)(v«) }

-

(n) NP
[word
HEAD [noun]
SYN SPR ()
VAL
comMPs ()
L-TYPE &
SEM T-HEAD kim
TERM
WHERE { }
Kim

word

SYN

SEM

(m) VP
L-TYPE (& — p)
SEM T-HEAD Ayi(some (d(yx)) (h(y«)))
o TERM WHERE {d := Ay,dog,

h = Ay Axghug(xq) () }

-

(n3) V

HEAD [verb}

SPR @
VAL
comps (2,)
L-TYPE (&8 — (8 — p))
T-HEAD hug
TERM
WHERE { }
hugged

(na) NPy,
HEAD [noun}
SYN comps ()
VAL
SPR ()
L-TYPE (€—P)—p
T-HEAD some(d)
SEM | TERM
WHERE {d := dog }
INDEX Xg

some dog

|

John likes Mary's father. (3a)
Lender, like(john)(father_of (mary)) : p (3b)
= like(j)(f)where {j := john, m := mary, (3¢)

f := father_of (m)}
E(like(john)(father_of (mary))) : t (4a)
= &(P)where {P := like(john)(father_of (mary))} (4b)

= E(P)where {P := like(j)(f), j := john, m := mary, (4c)
f := father_of (m)}
Informally: For any d : s,
den(E(P)(d)) = 1 iff the proposition den(like(j)(f)(d)) holds (5)
iff in den(d), the situated prop. den(like(j)(f)) is true
(6)

10

T-intention

One more clause to the definition of Canonical Forms

For every A : p, such that
cf(A) = Agwhere {p1 := A1,...,pp = Apn},

cf(3xA) := Ixp(x) where {p := AxAG, p1 := AXAT, ..., pp, == XA}
(7a)
cf(VxA) := Vxp(x) where {p := AxAg, p] := AXAL, ..., pl, == MxAL}
(7b)

where for all i =1,...,n, pf is a fresh location, and
forall i=0,...,n, A := Ai{p1 = pi(x),....pn = pp(x)}.

Let C € {and, or, if, }, .
Q,Qi:p, cf(Q) = Qowhere{qG:= Q}, and
cf(Qi) = Qiowhere{q; := Q;}, for i € {1,2}. By the def of the
canonical forms:
cf(E(C(Q1, Q2))) = E(Q) where {Q := ((q1, q2), (8a)
q1 = Qu0, g2 := 0,
qi = 61,52 = 62}
cf(E(not(Q)) = E(N) where {N := not(q),q == Q, (8b)
G:=Q}
f(E(3xQ)) = E(N) where {N := IxQp, G := Q} (8c)
cf(E(VxQ)) = E(N) where {N :=VxQo, G := @} (8d)
By (8a)-(8d), the truth evaluation by £ doesn't proceed

compositionally through the propositional sub-terms of the logical

connectors. b

E(not(X)) =71 —(p) where {p := E(X)} (9a)
E(and(X1, X2)) =7 (p1 & p2) where {p1 := E(X1), p2 := E(X2)} (9b)
E(or(X1, X2)) =7 (p1V p2) where {py := E(X1), p2 := 5(X)} (9¢)
E(if (X1, %2)) =71 (p1 — p2) where {p1 := E(X1), p2 := E(X2)} (9d)
E(some(Xq, X2)) =71 Ix(p1(x) & p2(x)) where {p1 :=)\XE(Xl (%)),
p2 = AxE(Xa(x)) (x is fresh) (9e)
&(every (X1, X2)) =7 Vx(p1(x) — p2(x)) where {py := AxE(X1(x)),
p2 := MxE(Xa(x)) (x is fresh) (9)
E(is(X1, X2)) =71 Ad(p1(d) = p2(d)) where (9g)
{pi :=AdXi(d) | i € {1,2}}(d : s, is fresh)

Note: The def. should have cases w.r.t. the immediate terms.
13

T-intention

For any non-logical constant R : (o1 X ... X 0, — p) and any
immediate terms X1 : 01,..., X, op

S(R(Xl, 500 ,Xn)) =>T)\Xl 500 /\x,,S(r(xl, 500 ,Xn))(Xl, ce ,Xn)
where {r :== R} (10)

The term Axq ... Axp&(r(x1,...,xn)) represents the characteristic
function of the relation denoted by r, and thus, by R. While

E(R(X1,...,Xn)) = E(r)where {r := R(X1,...,Xn)} (11)
E(like(j)(m)) =1 M dxe€(r(x1,x2))(j, m) where {r := like} (12)

E(believe(j)(q)) = £(r)where {r := believe(j, q)} (13a)

E(believe(j)(q)) =1 Mxarx€(r(x1,x2))(J, q) where {r := believe}
(13b)

T-intention

For any attitude constant B and any assignment system
Aowhere {p1 == A1,....pi == Ai,....pj == Aj,....pn = Apn},

Q if B(u, pj, V) occurs in some Aj, then p; is in the scope of B

Q if py is in the scope of B, and p, occurs in Ay,
then p, is in the scope of B.

T-intention

Restricted Compositionality of £

Let (Agwhere {p1 := A1,...,pn:= An}) : p be such that
© it is irreducible, and

Q A, ..., A areall the terms, such that £(A;) =7 B; and
pj is not in the scope of any attitude constant
(j€{0,...,n}).

Then, E(Agwhere {p1 := A1,...,pn:= Ap}) =7 cf(E), where
@ if Ay is a proper term

E =(&(po) where {pg := Ao, p1 := A1 ..., pn = A }){A;, = Bi,
.. ,A,‘k = B,'k} (143)

Q@ if Ag is immediate (i.e., not a proper term)

E =(E(Ao)where {p1 := A1 ..., pn = A){A, =By, ...,
.. ,A,‘k = B,'k} (14b)

16

John believes that Mary is happy. tender, (15a)

A =believe(john)(happy(mary)) : p (15b)
= believe(j)(q) where {m := mary, j := john,

q == happy(m)} (15¢)

& (believe(john)(happy(mary))) : t (16a)

= E(P) where {P := believe(john)(happy(mary))} (16b)
=cr E(P)where {P := believe(j)(q), m := mary, j := john,
q := happy(m)} (16¢)

cf(A) =71 E(P)where {P := Axy A& (r(x1,x2))(, 9),
m := mary, j := john,
r := believe, q := happy(m)} (17)

17

Vision: The Big Picture for Applications to NL SynSem

The Big Picture in NLP: Simplified and Approximated, but Realistic

@ Semantics of NL: via “logical forms”

Syn of NL <= Syn of L;‘,/L;\ — Canonical Terms = Denotations

SynSem

@ Translation

render

Lexicon of NL; <= Syn of NL; L;\,/L;\ Terms

|l Reduction
L2 /L Canonical Terms

| (possible modifications)

render—

1
Lexicon of NL, <= Syn of NL, La’\,CanonicaI Terms

18

THE START

	Introduction
	Syntax of Lar and Lexar
	Applications to CompSem of NL
	Antecedent–anaphora relations

	T-intention
	Vision: The Big Picture for Applications to NL SynSem

