Simulating Negation in Positive Logic

João Marcos

LoLITA / DIMAp, UFRN, BR
Logic Colloquium 2009
Sofia, BG
Jul 31-Aug 5, 2009

Deducibility \& Logical Constants

Consequence relations

$\Gamma, \gamma \vdash \delta, \Delta$ your preferred deductive formalism
(many-valued) semantics General Abstract Nonsense

Deducibility \& Logical Constants

Consequence relations

$\Gamma, \gamma \vdash \delta, \Delta$ your preferred deductive formalism
$\Gamma, \gamma \vDash \delta, \Delta$ (many-valued) semantics

Deducibility \& Logical Constants

Consequence relations

$\Gamma, \gamma \vdash \delta, \Delta$ your preferred deductive formalism
$\Gamma, \gamma \vDash \delta, \Delta$ (many-valued) semantics
$\Gamma, \gamma \Vdash \delta, \Delta$ General Abstract Nonsense

Deducibility \& Logical Constants

On the role of the object-language constructors

$$
\frac{\Gamma \Vdash \Delta}{\Gamma, \top \Vdash \Delta}
$$

$$
\frac{\Gamma \Vdash \Delta}{\Gamma \Vdash \perp, \Delta}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors

$$
\begin{array}{ll}
\frac{\Gamma \Vdash \Delta}{\overline{\Gamma, \top \Vdash \Delta}} & \frac{\Gamma \Vdash \Delta}{\overline{\Gamma \Vdash \perp, \Delta}} \\
\frac{\Gamma, \alpha, \beta \Vdash \Delta}{\Gamma, \alpha \wedge \beta \Vdash \Delta} & \frac{\Gamma \Vdash \alpha, \beta, \Delta}{\overline{\Gamma \Vdash \alpha \vee \beta, \Delta}}
\end{array}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors

$$
\begin{array}{ll}
\frac{\Gamma \Vdash \Delta}{\Gamma, \top \Vdash \Delta} & \overline{\Gamma \Vdash \Delta} \\
\frac{\Gamma, \alpha, \beta \Vdash \Delta}{\Gamma, \alpha \Vdash \beta \Vdash, \Delta} \\
\frac{\Gamma, \alpha \Vdash \beta, \Delta}{\Gamma \Vdash \alpha \rightarrow \beta, \Delta} & \overline{\Gamma \Vdash \alpha, \beta, \Delta} \\
\hline \Gamma \Vdash \beta \vee \beta, \Delta \\
\hline \Gamma, \beta \multimap \alpha \Vdash \Delta
\end{array}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors

$$
\begin{array}{ll}
\frac{\Gamma \Vdash \Delta}{\overline{\Gamma, \top \Vdash \Delta}} & \overline{\Gamma \Vdash \Delta} \\
\overline{\Gamma, \alpha, \beta \Vdash \Delta} \\
\hline \overline{\Gamma, \alpha \wedge \beta \Vdash \Delta} & \overline{\Gamma \Vdash \alpha, \beta, \Delta} \\
\overline{\Gamma, \alpha \Vdash \beta, \Delta} & \overline{\Gamma \Vdash \alpha \vee \beta, \Delta} \\
\hline \overline{\Gamma, \alpha \Vdash \beta, \alpha \Vdash \beta, \Delta} \\
\hline \overline{\Gamma \Vdash \sim \alpha, \Delta} & \overline{\Gamma \Vdash \alpha \Vdash \Delta \Vdash \Delta} \\
\hline \Gamma \sim \alpha \Vdash \Delta
\end{array}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors

$$
\begin{aligned}
& \frac{\Gamma \Vdash \Delta}{\Gamma, \top \Vdash \Delta} \\
& \frac{\Gamma, \alpha, \beta \Vdash \Delta}{\Gamma, \alpha \wedge \beta \Vdash \Delta} \\
& \frac{\Gamma, \alpha \Vdash \beta, \Delta}{\Gamma \Vdash \alpha \rightarrow \beta, \Delta} \\
& \frac{\Gamma, \alpha \Vdash \Delta}{\Gamma \Vdash \sim \alpha, \Delta} \\
& \text { Consider } \\
& \sim_{1} \alpha \stackrel{\text { def }}{=} \smile \alpha \stackrel{\text { def }}{=} \alpha \rightarrow \perp . \\
& \frac{\Gamma \Vdash \Delta}{\Gamma \Vdash \perp, \Delta} \\
& \frac{\Gamma \Vdash \alpha, \beta, \Delta}{\Gamma \Vdash \alpha \vee \beta, \Delta} \\
& \frac{\Gamma, \alpha \Vdash \beta, \Delta}{\Gamma, \beta \multimap \alpha \Vdash \Delta} \\
& \Gamma \Vdash \alpha, \Delta \\
& \overline{\Gamma, \sim \alpha \Vdash \Delta} \\
& \text { Consider } \\
& \sim_{2} \alpha \stackrel{\text { def }}{=} \frown \alpha \stackrel{\text { def }}{=} \alpha \multimap \top \text {. }
\end{aligned}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors (contd.)

$$
\frac{\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash \Delta}{\Gamma \Vdash \uparrow\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta} \quad \frac{\Gamma \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta}{\Gamma, \downarrow\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \Delta}
$$

Deducibility \& Logical Constants

On the role of the object-language constructors (contd.)

$$
\begin{aligned}
\frac{\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash \Delta}{\overline{\Gamma \Vdash \uparrow\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta}} & \frac{\Gamma \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta}{\overline{\Gamma, \downarrow\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \Delta}} \\
& \frac{\Gamma, \alpha \Vdash \vdash, \Delta}{\overline{\Gamma \Vdash \alpha \leftrightarrow \beta, \Delta}} \overline{\Gamma, \alpha+\beta \Vdash \Delta}
\end{aligned}
$$

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

Now, to force the following specific restriction.

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

(C)	1	0
1	1	0
0	0	0

Now, to force the following specific restriction.

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

(C)	1	0
1	1	0
0	0	0

Now, to force the following specific restriction...

(c)	1	0
1	\ldots	\ldots
0	0	\ldots

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

(c)	1	0
1	1	0
0	0	0

Now, to force the following specific restriction...

(c)	1	0
1	\ldots	\ldots
0	0	\ldots

... one might consider a rule such as:

$$
\xlongequal[\Gamma, \alpha \subset \beta \Vdash \Delta]{\Gamma, \alpha \Vdash \Delta \quad \Gamma \Vdash \beta, \Delta}
$$

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

(C)	1	0
1	1	0
0	0	0

On what concerns duality...

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

(C)	1	0
1	1	0
0	0	0

On what concerns duality...
... one should invert the inputs. . .

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

©	1	0
1	1	0
0	0	0

On what concerns duality...
... one should invert the inputs. . .

(c)	0	1
0	1	0
1	0	0

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

©	1	0
1	1	0
0	0	0

On what concerns duality...
... and also the outputs. . .

(c)	0	1
0	1	0
1	0	0

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

©	1	0
1	1	0
0	0	0

On what concerns duality...
... and also the outputs. . .

(c)	0	1
0	0	1
1	1	1

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

©	1	0
1	1	0
0	0	0

On what concerns duality...
Rearranging now this table, one obtains (C) ${ }^{d}$:

(c)	0	1
0	0	1
1	1	1

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2 -valued connective:

©	1	0
1	1	0
0	0	0

On what concerns duality...
Rearranging now this table, one obtains (C) ${ }^{d}$:

(C) d	1	0
1	1	1
0	1	0

What is a 'Negative' Constructor?

	\bigcirc_{2}^{3}
1	1
1	0
0	0

	\bigcirc_{2}^{2}
1	1
0	1
0	0

	\bigcirc_{2}^{1}
1	1
0	0

kinds of affirmation

kinds of negation \quad\begin{tabular}{|l|l|}
\hline \& \odot_{1}^{1}

\hline 1 \& 0

\hline 0 \& 1

\hline

\quad

\hline \& \odot_{1}^{2}

\hline 1 \& 0

\hline 0 \& 0

\hline 0 \& 1

\hline

\quad

\hline \& \odot_{1}^{3}

\hline 1 \& 0

\hline 1 \& 1

\hline 0 \& 1

\hline

\quad

\hline \& \odot_{1}^{4}

\hline 1 \& 0

\hline 1 \& 1

\hline 0 \& 0

\hline 0 \& 1

\hline
\end{tabular}

What is a 'Negative' Constructor?

	\bigcirc_{2}^{3}
1	1
1	0
0	0

	\bigcirc_{2}^{2}
1	1
0	1
0	0

	\bigcirc_{2}^{1}
1	1
0	0

kinds of affirmation
kinds of negation

	\bigcirc_{1}^{1}
1	0
0	1

	\bigcirc_{1}^{2}
1	0
0	0
0	1

	\bigcirc_{1}^{3}
1	0
1	1
0	1

	\bigcirc_{1}^{4}
1	0
1	1
0	0
0	1

[PureRules, 2005]

A minimally decent negation \sim is one such that:

$$
\text { Г, } \alpha \Vdash \sim \alpha, \Delta \quad \text { Г, } \sim \alpha \Vdash \alpha, \Delta
$$

What is a 'Negative' Constructor?

	\bigcirc_{2}^{3}
1	1
1	0
0	0

	\bigcirc_{2}^{2}
1	1
0	1
0	0

	\bigcirc_{2}^{1}
1	1
0	0

kinds of affirmation
kinds of negation

	\bigcirc_{1}^{1}
1	0
0	1

	\bigcirc_{1}^{2}
1	0
0	0
0	1

	\bigcirc_{1}^{3}
1	0
1	1
0	1

	\bigcirc_{1}^{4}
1	0
1	1
0	0
0	1

[PureRules, 2005]

A minimally decent negation \sim is one such that:

$$
\Gamma, \alpha \Vdash \sim \alpha, \Delta \quad \text { Г, } \sim \alpha \Vdash \alpha, \Delta
$$

In particular, given weakening:
「 $\Vdash \sim \alpha, \Delta$
$\Gamma, \sim \alpha \Vdash \Delta$

What is a 'Negative' Constructor?

[PureRules, 2005]

An iteratively minimally decent negation \sim is one such that, for each n : $\Gamma, \sim^{n} \alpha \Vdash \sim^{n+1} \alpha, \Delta$
$\Gamma, \sim^{n+1} \alpha \Vdash \sim^{n} \alpha, \Delta$

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say that (c) is assertion-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=1 \Rightarrow v\left(\complement\left(p_{1}, \ldots, p_{m}\right)\right)=1$

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say that (c) is assertion-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=1 \Rightarrow v\left(\subset\left(p_{1}, \ldots, p_{m}\right)\right)=1$ Examples: $\wedge, \vee, \rightarrow$ and \leftrightarrow

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say that (c) is assertion-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=1 \Rightarrow v\left(\complement\left(p_{1}, \ldots, p_{m}\right)\right)=1$
Examples: $\wedge, \vee, \rightarrow$ and \leftrightarrow
Say that (c) is refutation-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=0 \Rightarrow v\left(\complement\left(p_{1}, \ldots, p_{m}\right)\right)=0$

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say that (c) is assertion-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=1 \Rightarrow v\left(\complement\left(p_{1}, \ldots, p_{m}\right)\right)=1$
Examples: $\wedge, \vee, \rightarrow$ and \leftrightarrow
Say that (c) is refutation-preserving in case:
$v\left(p_{1}\right)=\ldots=v\left(p_{m}\right)=0 \Rightarrow v\left(C\left(p_{1}, \ldots, p_{m}\right)\right)=0$
Examples: \wedge, \vee, \multimap and +

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say now that (c) is monotonic over its i-th argument if:
$v\left(p_{i}\right) \leq v\left(q_{i}\right) \Rightarrow v(\subset(\ldots)) \leq v\left(\complement(\ldots)\left[p_{i} \mapsto q_{i}\right]\right)$

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say now that (c) is monotonic over its i-th argument if:
$v\left(p_{i}\right) \leq v\left(q_{i}\right) \Rightarrow v(\complement(\ldots)) \leq v($ (C) $\left.\ldots)\left[p_{i} \mapsto q_{i}\right]\right)$
Examples:
\wedge and \vee are monotonic over both arguments
\rightarrow and \multimap are monotonic only over the 2 nd argument

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.
Say now that (c) is monotonic over its i-th argument if:
$v\left(p_{i}\right) \leq v\left(q_{i}\right) \Rightarrow v(\subset(\ldots)) \leq v\left(\complement(\ldots)\left[p_{i} \mapsto q_{i}\right]\right)$
Examples:
\wedge and \vee are monotonic over both arguments
\rightarrow and \multimap are monotonic only over the 2 nd argument

A constructor will be called completely antitonic if it is non-monotonic over each of its arguments.

What is a 'Negative' Constructor?

Some properties that a negative constructor should fail to have

Let (c) be an m-ary connective.

Say now that (c) is monotonic over its i-th argument if:
$v\left(p_{i}\right) \leq v\left(q_{i}\right) \Rightarrow v(\subset(\ldots)) \leq v\left(\complement(\ldots)\left[p_{i} \mapsto q_{i}\right]\right)$
Examples:
\wedge and \vee are monotonic over both arguments
\rightarrow and \multimap are monotonic only over the 2 nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
\sim (both \smile and $\frown), \uparrow$ and \downarrow

What is a 'Negative' Constructor?

Disclosing some further lessons about negation

From an abstract perspective:

What is a 'Negative' Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
(C) is assertion-preserving in case $\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash$ (C) $\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta$
(C) is refutation-preserving in case Γ, © $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta$

What is a 'Negative' Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
(C) is assertion-preserving in case $\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash$ (C) $\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta$
(C) is refutation-preserving in case Γ, © $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta$
(C) is monotonic over its i-th argument if
$\Gamma, \alpha \Vdash \beta, \Delta \Rightarrow \Gamma$, © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \alpha\right] \Vdash$ © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \beta\right], \Delta$

What is a 'Negative' Constructor?

[PureRules, 2005]

An iteratively minimally decent negation \sim is one such that, for each n :

$$
\left\ulcorner, \sim^{n} \alpha \Vdash \sim^{n+1} \alpha, \Delta \quad \text { Г, } \sim^{n+1} \alpha \Vdash \sim^{n} \alpha, \Delta\right.
$$

Disclosing some further lessons about negation

From an abstract perspective:
(C) is assertion-preserving in case $\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash$ (c) $\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta$
(C) is refutation-preserving in case Γ, © $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta$
(C) is monotonic over its i-th argument if
$\Gamma, \alpha \Vdash \beta, \Delta \Rightarrow \Gamma$, © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \alpha\right] \Vdash$ © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \beta\right], \Delta$

Sine qua non
A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

What is a 'Negative' Constructor?

[PureRules, 2005]

An iteratively minimally decent negation \sim is one such that, for each n :

$$
\Gamma, \sim^{n} \alpha \Vdash \sim^{n+1} \alpha, \Delta \quad \text { Г, } \sim^{n+1} \alpha \Vdash \sim^{n} \alpha, \Delta
$$

Disclosing some further lessons about negation

From an abstract perspective:
(C) is assertion-preserving in case $\Gamma, \alpha_{1}, \ldots, \alpha_{m} \Vdash$ (c) $\left(\alpha_{1}, \ldots, \alpha_{m}\right), \Delta$
(C) is refutation-preserving in case Γ, © $\left(\alpha_{1}, \ldots, \alpha_{m}\right) \Vdash \alpha_{1}, \ldots, \alpha_{m}, \Delta$
(C) is monotonic over its i-th argument if
$\Gamma, \alpha \Vdash \beta, \Delta \Rightarrow \Gamma$, © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \alpha\right] \Vdash$ © $\left(\ldots, p_{i}, \ldots\right)\left[p_{i} \mapsto \beta\right], \Delta$

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

Negation as You Like It

Consider the following systems:

Negation as You Like It

Here are some remarkable valid inferences:

Assume $\sim \alpha \stackrel{\text { def }}{=} \smile^{\text {def }} \alpha \rightarrow$ I.
in J :

$$
\begin{aligned}
& \alpha, \sim \alpha \Vdash \sim \beta \\
& \alpha \rightarrow \beta, \alpha \rightarrow \sim \beta \Vdash \sim \alpha \\
& \alpha \Vdash \sim \sim \alpha
\end{aligned}
$$

Negation as You Like It

[NTF, 2009]

in J :
Here are some remarkable valid inferences:

Assume $\sim \alpha \stackrel{\text { def }}{=} \smile^{\text {def }}=\underset{=}{ }$ I.

Negation as You Like It

[NTF, 2009]

in J :
Here are some remarkable valid inferences:

Assume $\sim \alpha \stackrel{\text { def }}{=} \smile^{\text {def }}=\underset{=}{ }$ I.

Negation as You Like It

[NTF, 2009]

Here are some remarkable valid inferences:

Assume $\sim \alpha \stackrel{\text { def }}{=} \smile \alpha \stackrel{\text { def }}{=} \alpha \rightarrow I$.
in J :
in J :

$$
\begin{aligned}
& \alpha, \sim \alpha \Vdash \sim \beta \\
& \alpha \rightarrow \beta, \alpha \rightarrow \sim \beta \Vdash \sim \alpha \\
& \alpha \Vdash \sim \sim \alpha
\end{aligned}
$$

in $J(\perp)$:

$$
\alpha, \sim \alpha \Vdash \beta
$$

in K :

$$
\begin{aligned}
& \alpha \rightarrow \sim \alpha \Vdash \sim \alpha \\
& \alpha \rightarrow \beta, \sim \alpha \rightarrow \beta \Vdash \beta \\
& \Vdash \alpha, \sim \alpha
\end{aligned}
$$

in $K(\perp)$:
$\sim \alpha \rightarrow \alpha \Vdash \alpha$
$\sim \sim \alpha \Vdash \alpha$

Negation as You Might Imagine It

Consider next the following dual systems:

Assume $\sim \alpha \stackrel{\text { def }}{=} \sim \alpha \stackrel{\text { def }}{=} \alpha \multimap I$.

A Non-deterministic Approach

On truth-tables

Let (c) be an m-ary constructor, and v a valuation.
Deterministic approach:
(D1) © : $\mathcal{V}^{m} \longrightarrow \mathcal{V}$ is a total mapping s.t.: (D2) $v\left(\right.$ (C $\left.\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)=$ © $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{m}\right)\right)$

A Non-deterministic Approach

On truth-tables

Let (c) be an m-ary constructor, and v a valuation.
Deterministic approach:
(D1) © : $\mathcal{V}^{m} \longrightarrow \mathcal{V}$ is a total mapping s.t.:
(D2) $v\left(\right.$ © $\left.\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)=$ © $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{m}\right)\right)$
Non-deterministic approach:
(ND1) © : $\mathcal{V}^{m} \longrightarrow \operatorname{Pow}(\mathcal{V}) \backslash \varnothing$ is a total mapping s.t.:
$($ ND2 $) ~ v\left(\subset\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right) \in$ © $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{m}\right)\right)$

A Non-deterministic Approach

On truth-tables

Let (c) be an m-ary constructor, and v a valuation.
Deterministic approach:
(D1) © : $\mathcal{V}^{m} \longrightarrow \mathcal{V}$ is a total mapping s.t.:
(D2) $v\left(\right.$ (C $\left.\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)=$ © $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{m}\right)\right)$
Non-deterministic approach:
(ND1) © : $\mathcal{V}^{m} \longrightarrow \operatorname{Pow}(\mathcal{V}) \backslash \varnothing$ is a total mapping s.t.:
(ND2) $v\left(\subset\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right) \in$ © $\left(v\left(\alpha_{1}\right), \ldots, v\left(\alpha_{m}\right)\right)$

Example (On negation)

$$
\text { Paraconsistent: } \begin{array}{c|c}
\alpha & \smile \alpha \\
\hline 0 & \{1\} \\
\hline 1 & \{0,1\}
\end{array} \quad \text { Paracomplete: } \quad \begin{array}{c|c}
\alpha & \frown \alpha \\
\hline 0 & \{0,1\} \\
\hline 1 & \{0\}
\end{array}
$$

A Non-deterministic Approach

A Non-deterministic Approach

Interpretations for K and $d K$ (adaptable for J and $d J$)
Assume the classical interpretations of $\{\wedge, \vee, \rightarrow, \multimap\}$ over $\{0,1\}$. Interpret I non-deterministically by setting I: $\varnothing \longrightarrow\{0,1\}$, i.e., allow $v(I) \in\{0,1\}$.

A Non-deterministic Approach

Example (On negation)

Interpretations for K and $d K$ (adaptable for J and $d J$)

Assume the classical interpretations of $\{\wedge, \vee, \rightarrow, \multimap\}$ over $\{0,1\}$. Interpret I non-deterministically by setting $I: \varnothing \longrightarrow\{0,1\}$, i.e., allow $v(I) \in\{0,1\}$.
You may now in fact define:
$\smile_{\alpha} \stackrel{\text { def }}{=} \alpha \rightarrow$ I
$\frown \alpha \stackrel{\text { def }}{=} \alpha \multimap I$

