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Deducibility & Logical Constants

Consequence relations

Γ, γ ` δ,∆ your preferred deductive formalism

Γ, γ � δ,∆ (many-valued) semantics

Γ, γ  δ,∆ General Abstract Nonsense
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Deducibility & Logical Constants

On the role of the object-language constructors

Γ  ∆
Γ,>  ∆
Γ, α, β  ∆

Γ, α ∧ β  ∆
Γ, α  β,∆

Γ  α→ β,∆
Γ, α  ∆

Γ  ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ  ∆
Γ  ⊥,∆
Γ  α, β,∆

Γ  α ∨ β,∆
Γ, α  β,∆

Γ, β( α  ∆
Γ  α,∆

Γ,∼α  ∆

Consider
∼2 α

def
== _α

def
== α( >.
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Deducibility & Logical Constants

On the role of the object-language constructors (contd.)

Γ, α1, . . . , αm  ∆

Γ  ↑(α1, . . . , αm),∆

Γ  α1, . . . , αm,∆

Γ, ↓(α1, . . . , αm)  ∆

Γ, α a β,∆
Γ  α↔ β,∆

Γ, α + β  ∆
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The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1 . . . . . .

0 0 . . .

. . . one might consider a rule such as:

Γ,α  ∆ Γ  β,∆

Γ,α c©β  ∆
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The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
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How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . one should invert the inputs. . .
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0 1 0

1 0 0
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The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . and also the outputs. . .

c© 0 1

0 1 0

1 0 0
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The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
Rearranging now this table, one obtains c©d :

c© 0 1

0 0 1

1 1 1
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What is a ‘Negative’ Constructor?

}3
2

1 1

1 0

0 0

}2
2

1 1

0 1

0 0

}1
2

1 1

0 0

kinds of affirmation

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kinds of negation

}1
1

1 0

0 1

}2
1

1 0

0 0

0 1

}3
1

1 0

1 1

0 1

}4
1

1 0

1 1

0 0

0 1

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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[PureRules, 2005]

A minimally decent negation ∼ is one such that:
Γ, α 6 ∼α,∆ Γ,∼α 6 α,∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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[PureRules, 2005]

A minimally decent negation ∼ is one such that:
Γ, α 6 ∼α,∆ Γ,∼α 6 α,∆

In particular, given weakening :
Γ 6 ∼α,∆ Γ,∼α 6 ∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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What is a ‘Negative’ Constructor?

[PureRules, 2005]

An iteratively minimally decent negation ∼ is one such that, for each n:
Γ,∼nα 6 ∼n+1α,∆ Γ,∼n+1α 6 ∼nα,∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
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Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7



What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.
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v(p1) = . . . = v(pm) = 1 ⇒ v( c©(p1, . . . , pm)) = 1
Examples: ∧, ∨, → and ↔
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What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say now that c© is monotonic over its i-th argument if:
v(pi ) ≤ v(qi ) ⇒ v( c©(. . .)) ≤ v( c©(. . .)[pi 7→ qi ])
Examples:
∧ and ∨ are monotonic over both arguments
→ and ( are monotonic only over the 2nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
∼ (both ^ and _), ↑ and ↓

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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What is a ‘Negative’ Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm  c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm)  α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α  β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α]  c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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c© is refutation-preserving in case Γ, c©(α1, . . . , αm)  α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α  β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α]  c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.
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Negation as You Like It [NTF, 2009]

Consider the following systems:
2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.
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Assume ∼ α def
== ^α

def
== α→ ⊥>.

in J:
α,∼α  ∼β
α→ β, α→ ∼β  ∼α
α  ∼∼α

in J(⊥):
α,∼α  β

in K :
α→ ∼α  ∼α
α→ β,∼α→ β  β
 α,∼α

in K (⊥):
∼α→ α  α
∼∼α  α
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Negation as You Might Imagine It

Consider next the following dual systems:

2 João Marcos
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add Peirce to Ax //

add ⊥> to Σ1

��
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��
J
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!!CCCCCCCC
// K

zztttttttttt
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J(⊥)
=
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��
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�����������
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=
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��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.Assume ∼ α def
== _α

def
== α( ⊥>.
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A Non-deterministic Approach

On truth-tables

Let c© be an m-ary constructor, and v a valuation.

Deterministic approach:
(D1) c© : Vm −→ V is a total mapping s.t.:
(D2) v( c©(α1, . . . ,αm)) = c©(v(α1), . . . , v(αm))

Non-deterministic approach:
(ND1) c© : Vm −→ Pow(V) \∅ is a total mapping s.t.:
(ND2) v( c©(α1, . . . ,αm)) ∈ c©(v(α1), . . . , v(αm))

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}
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A Non-deterministic Approach

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

Interpretations for K and dK (adaptable for J and dJ)

Assume the classical interpretations of {∧,∨,→,(} over {0, 1}.
Interpret ⊥> non-deterministically by setting
⊥> : ∅ −→ {0, 1}, i.e., allow v(⊥>) ∈ {0, 1}.
You may now in fact define:
^α

def
== α→ ⊥>

_α
def
== α( ⊥>
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