
Simulating Negation in Positive Logic

João Marcos

LoLITA / DIMAp, UFRN, BR

Logic Colloquium 2009
Sofia, BG

Jul 31–Aug 5, 2009

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 1 / 7

Deducibility & Logical Constants

Consequence relations

Γ, γ ` δ,∆ your preferred deductive formalism

Γ, γ � δ,∆ (many-valued) semantics

Γ, γ δ,∆ General Abstract Nonsense

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

Consequence relations

Γ, γ ` δ,∆ your preferred deductive formalism

Γ, γ � δ,∆ (many-valued) semantics

Γ, γ δ,∆ General Abstract Nonsense

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

Consequence relations

Γ, γ ` δ,∆ your preferred deductive formalism

Γ, γ � δ,∆ (many-valued) semantics

Γ, γ δ,∆ General Abstract Nonsense

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors

Γ ∆
Γ,> ∆
Γ, α, β ∆

Γ, α ∧ β ∆
Γ, α β,∆

Γ α→ β,∆
Γ, α ∆

Γ ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ ∆
Γ ⊥,∆
Γ α, β,∆

Γ α ∨ β,∆
Γ, α β,∆

Γ, β(α ∆
Γ α,∆

Γ,∼α ∆

Consider
∼2 α

def
== _α

def
== α(>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors

Γ ∆
Γ,> ∆
Γ, α, β ∆

Γ, α ∧ β ∆
Γ, α β,∆

Γ α→ β,∆
Γ, α ∆

Γ ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ ∆
Γ ⊥,∆
Γ α, β,∆

Γ α ∨ β,∆
Γ, α β,∆

Γ, β(α ∆
Γ α,∆

Γ,∼α ∆

Consider
∼2 α

def
== _α

def
== α(>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors

Γ ∆
Γ,> ∆
Γ, α, β ∆

Γ, α ∧ β ∆
Γ, α β,∆

Γ α→ β,∆
Γ, α ∆

Γ ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ ∆
Γ ⊥,∆
Γ α, β,∆

Γ α ∨ β,∆
Γ, α β,∆

Γ, β(α ∆
Γ α,∆

Γ,∼α ∆

Consider
∼2 α

def
== _α

def
== α(>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors

Γ ∆
Γ,> ∆
Γ, α, β ∆

Γ, α ∧ β ∆
Γ, α β,∆

Γ α→ β,∆
Γ, α ∆

Γ ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ ∆
Γ ⊥,∆
Γ α, β,∆

Γ α ∨ β,∆
Γ, α β,∆

Γ, β(α ∆
Γ α,∆

Γ,∼α ∆

Consider
∼2 α

def
== _α

def
== α(>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors

Γ ∆
Γ,> ∆
Γ, α, β ∆

Γ, α ∧ β ∆
Γ, α β,∆

Γ α→ β,∆
Γ, α ∆

Γ ∼α,∆
Consider
∼1 α

def
== ^α

def
== α→ ⊥.

Γ ∆
Γ ⊥,∆
Γ α, β,∆

Γ α ∨ β,∆
Γ, α β,∆

Γ, β(α ∆
Γ α,∆

Γ,∼α ∆

Consider
∼2 α

def
== _α

def
== α(>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors (contd.)

Γ, α1, . . . , αm ∆

Γ ↑(α1, . . . , αm),∆

Γ α1, . . . , αm,∆

Γ, ↓(α1, . . . , αm) ∆

Γ, α a β,∆
Γ α↔ β,∆

Γ, α + β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

Deducibility & Logical Constants

On the role of the object-language constructors (contd.)

Γ, α1, . . . , αm ∆

Γ ↑(α1, . . . , αm),∆

Γ α1, . . . , αm,∆

Γ, ↓(α1, . . . , αm) ∆

Γ, α a β,∆
Γ α↔ β,∆

Γ, α + β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 2 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1

0 0 . . .

. . . one might consider a rule such as:

Γ,α ∆ Γ β,∆

Γ,α c©β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1

0 0 . . .

. . . one might consider a rule such as:

Γ,α ∆ Γ β,∆

Γ,α c©β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1

0 0 . . .

. . . one might consider a rule such as:

Γ,α ∆ Γ β,∆

Γ,α c©β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1

0 0 . . .

. . . one might consider a rule such as:

Γ,α ∆ Γ β,∆

Γ,α c©β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

Now, to force the following specific restriction. . .

c© 1 0

1

0 0 . . .

. . . one might consider a rule such as:

Γ,α ∆ Γ β,∆

Γ,α c©β ∆

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . one should invert the inputs. . .

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . one should invert the inputs. . .

c© 0 1

0 1 0

1 0 0

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . and also the outputs. . .

c© 0 1

0 1 0

1 0 0

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
. . . and also the outputs. . .

c© 0 1

0 0 1

1 1 1

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
Rearranging now this table, one obtains c©d :

c© 0 1

0 0 1

1 1 1

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

The Profane Approach

How do rules affect truth-tables?

Consider the simple case of a binary 2-valued connective:

c© 1 0

1 1 0

0 0 0

On what concerns duality. . .
Rearranging now this table, one obtains c©d :

c©d 1 0

1 1 1

0 1 0

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 3 / 7

What is a ‘Negative’ Constructor?

}3
2

1 1

1 0

0 0

}2
2

1 1

0 1

0 0

}1
2

1 1

0 0

kinds of affirmation

. .

kinds of negation

}1
1

1 0

0 1

}2
1

1 0

0 0

0 1

}3
1

1 0

1 1

0 1

}4
1

1 0

1 1

0 0

0 1

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

}3
2

1 1

1 0

0 0

}2
2

1 1

0 1

0 0

}1
2

1 1

0 0

kinds of affirmation

. .

kinds of negation

}1
1

1 0

0 1

}2
1

1 0

0 0

0 1

}3
1

1 0

1 1

0 1

}4
1

1 0

1 1

0 0

0 1

[PureRules, 2005]

A minimally decent negation ∼ is one such that:
Γ, α 6 ∼α,∆ Γ,∼α 6 α,∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

}3
2

1 1

1 0

0 0

}2
2

1 1

0 1

0 0

}1
2

1 1

0 0

kinds of affirmation

. .

kinds of negation

}1
1

1 0

0 1

}2
1

1 0

0 0

0 1

}3
1

1 0

1 1

0 1

}4
1

1 0

1 1

0 0

0 1

[PureRules, 2005]

A minimally decent negation ∼ is one such that:
Γ, α 6 ∼α,∆ Γ,∼α 6 α,∆

In particular, given weakening :
Γ 6 ∼α,∆ Γ,∼α 6 ∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

[PureRules, 2005]

An iteratively minimally decent negation ∼ is one such that, for each n:
Γ,∼nα 6 ∼n+1α,∆ Γ,∼n+1α 6 ∼nα,∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say that c© is assertion-preserving in case:
v(p1) = . . . = v(pm) = 1 ⇒ v(c©(p1, . . . , pm)) = 1
Examples: ∧, ∨, → and ↔
Say that c© is refutation-preserving in case:
v(p1) = . . . = v(pm) = 0 ⇒ v(c©(p1, . . . , pm)) = 0
Examples: ∧, ∨, (and +

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say that c© is assertion-preserving in case:
v(p1) = . . . = v(pm) = 1 ⇒ v(c©(p1, . . . , pm)) = 1
Examples: ∧, ∨, → and ↔
Say that c© is refutation-preserving in case:
v(p1) = . . . = v(pm) = 0 ⇒ v(c©(p1, . . . , pm)) = 0
Examples: ∧, ∨, (and +

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say that c© is assertion-preserving in case:
v(p1) = . . . = v(pm) = 1 ⇒ v(c©(p1, . . . , pm)) = 1
Examples: ∧, ∨, → and ↔
Say that c© is refutation-preserving in case:
v(p1) = . . . = v(pm) = 0 ⇒ v(c©(p1, . . . , pm)) = 0
Examples: ∧, ∨, (and +

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say that c© is assertion-preserving in case:
v(p1) = . . . = v(pm) = 1 ⇒ v(c©(p1, . . . , pm)) = 1
Examples: ∧, ∨, → and ↔
Say that c© is refutation-preserving in case:
v(p1) = . . . = v(pm) = 0 ⇒ v(c©(p1, . . . , pm)) = 0
Examples: ∧, ∨, (and +

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say now that c© is monotonic over its i-th argument if:
v(pi) ≤ v(qi) ⇒ v(c©(. . .)) ≤ v(c©(. . .)[pi 7→ qi])
Examples:
∧ and ∨ are monotonic over both arguments
→ and (are monotonic only over the 2nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
∼ (both ^ and _), ↑ and ↓

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say now that c© is monotonic over its i-th argument if:
v(pi) ≤ v(qi) ⇒ v(c©(. . .)) ≤ v(c©(. . .)[pi 7→ qi])
Examples:
∧ and ∨ are monotonic over both arguments
→ and (are monotonic only over the 2nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
∼ (both ^ and _), ↑ and ↓

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say now that c© is monotonic over its i-th argument if:
v(pi) ≤ v(qi) ⇒ v(c©(. . .)) ≤ v(c©(. . .)[pi 7→ qi])
Examples:
∧ and ∨ are monotonic over both arguments
→ and (are monotonic only over the 2nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
∼ (both ^ and _), ↑ and ↓

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Some properties that a negative constructor should fail to have
Let c© be an m-ary connective.

Say now that c© is monotonic over its i-th argument if:
v(pi) ≤ v(qi) ⇒ v(c©(. . .)) ≤ v(c©(. . .)[pi 7→ qi])
Examples:
∧ and ∨ are monotonic over both arguments
→ and (are monotonic only over the 2nd argument

A constructor will be called completely antitonic
if it is non-monotonic over each of its arguments.
Examples:
∼ (both ^ and _), ↑ and ↓

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm) α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α] c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm) α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α] c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm) α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α] c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

[PureRules, 2005]

An iteratively minimally decent negation ∼ is one such that, for each n:
Γ,∼nα 6 ∼n+1α,∆ Γ,∼n+1α 6 ∼nα,∆

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm) α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α] c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

What is a ‘Negative’ Constructor?

[PureRules, 2005]

An iteratively minimally decent negation ∼ is one such that, for each n:
Γ,∼nα 6 ∼n+1α,∆ Γ,∼n+1α 6 ∼nα,∆

Disclosing some further lessons about negation

From an abstract perspective:
c© is assertion-preserving in case Γ, α1, . . . , αm c©(α1, . . . , αm),∆

c© is refutation-preserving in case Γ, c©(α1, . . . , αm) α1, . . . , αm,∆

c© is monotonic over its i -th argument if
Γ, α β,∆ ⇒ Γ, c©(. . . , pi , . . .)[pi 7→ α] c©(. . . , pi , . . .)[pi 7→ β],∆

Sine qua non

A negative constructor must be
(iteratively) non-assertion-preserving and non-refutation-preserving,
as well as completely antitonic.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 4 / 7

Negation as You Like It [NTF, 2009]

Consider the following systems:
2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 5 / 7

Negation as You Like It [NTF, 2009]

Here are some remarkable
valid inferences:2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.

Assume ∼ α def
== ^α

def
== α→ ⊥>.

in J:
α,∼α ∼β
α→ β, α→ ∼β ∼α
α ∼∼α

in J(⊥):
α,∼α β

in K :
α→ ∼α ∼α
α→ β,∼α→ β β
 α,∼α

in K (⊥):
∼α→ α α
∼∼α α

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 5 / 7

Negation as You Like It [NTF, 2009]

Here are some remarkable
valid inferences:2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.

Assume ∼ α def
== ^α

def
== α→ ⊥>.

in J:
α,∼α ∼β
α→ β, α→ ∼β ∼α
α ∼∼α

in J(⊥):
α,∼α β

in K :
α→ ∼α ∼α
α→ β,∼α→ β β
 α,∼α

in K (⊥):
∼α→ α α
∼∼α α

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 5 / 7

Negation as You Like It [NTF, 2009]

Here are some remarkable
valid inferences:2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.

Assume ∼ α def
== ^α

def
== α→ ⊥>.

in J:
α,∼α ∼β
α→ β, α→ ∼β ∼α
α ∼∼α

in J(⊥):
α,∼α β

in K :
α→ ∼α ∼α
α→ β,∼α→ β β
 α,∼α

in K (⊥):
∼α→ α α
∼∼α α

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 5 / 7

Negation as You Like It [NTF, 2009]

Here are some remarkable
valid inferences:2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.

Assume ∼ α def
== ^α

def
== α→ ⊥>.

in J:
α,∼α ∼β
α→ β, α→ ∼β ∼α
α ∼∼α

in J(⊥):
α,∼α β

in K :
α→ ∼α ∼α
α→ β,∼α→ β β
 α,∼α

in K (⊥):
∼α→ α α
∼∼α α

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 5 / 7

Negation as You Might Imagine It

Consider next the following dual systems:

2 João Marcos

IL[Σ1]
Σ1 = {∧,∨,→}

add Peirce to Ax //

add ⊥> to Σ1

��

CL[Σ1]

��
J

add ⊥> to Ax

!!CCCCCCCC
// K

zztttttttttt

J(>) // K(>)

J(⊥)
=
IL

��

add ⊥>→β to Ax

�����������
K(⊥)

=
CL

��

!!!!!!!!!!!

//

Figure 1. Johánsson and his family.

dCL[Σ2]

��

IL[Σ2]
Σ2 = {∧,∨, (}

add dual-Peirce to CounterAxoo

add ⊥> to Σ2

��
dK

%%LLLLLLLLLL dJ
add β(⊥> to CounterAx

{{xxxxxxxx
oo

dK(⊥) dJ(⊥)oo

dK(>)
=

CL

��

�����������

oo
dJ(>)

=
IL

��

add ⊥> to CounterAx

!!!!!!!!!!!

Figure 2. dual-Johánsson.Assume ∼ α def
== _α

def
== α(⊥>.

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 6 / 7

A Non-deterministic Approach

On truth-tables

Let c© be an m-ary constructor, and v a valuation.

Deterministic approach:
(D1) c© : Vm −→ V is a total mapping s.t.:
(D2) v(c©(α1, . . . ,αm)) = c©(v(α1), . . . , v(αm))

Non-deterministic approach:
(ND1) c© : Vm −→ Pow(V) \∅ is a total mapping s.t.:
(ND2) v(c©(α1, . . . ,αm)) ∈ c©(v(α1), . . . , v(αm))

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

A Non-deterministic Approach

On truth-tables

Let c© be an m-ary constructor, and v a valuation.

Deterministic approach:
(D1) c© : Vm −→ V is a total mapping s.t.:
(D2) v(c©(α1, . . . ,αm)) = c©(v(α1), . . . , v(αm))

Non-deterministic approach:
(ND1) c© : Vm −→ Pow(V) \∅ is a total mapping s.t.:
(ND2) v(c©(α1, . . . ,αm)) ∈ c©(v(α1), . . . , v(αm))

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

A Non-deterministic Approach

On truth-tables

Let c© be an m-ary constructor, and v a valuation.

Deterministic approach:
(D1) c© : Vm −→ V is a total mapping s.t.:
(D2) v(c©(α1, . . . ,αm)) = c©(v(α1), . . . , v(αm))

Non-deterministic approach:
(ND1) c© : Vm −→ Pow(V) \∅ is a total mapping s.t.:
(ND2) v(c©(α1, . . . ,αm)) ∈ c©(v(α1), . . . , v(αm))

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

A Non-deterministic Approach

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

Interpretations for K and dK (adaptable for J and dJ)

Assume the classical interpretations of {∧,∨,→,(} over {0, 1}.
Interpret ⊥> non-deterministically by setting
⊥> : ∅ −→ {0, 1}, i.e., allow v(⊥>) ∈ {0, 1}.
You may now in fact define:
^α

def
== α→ ⊥>

_α
def
== α(⊥>

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

A Non-deterministic Approach

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

Interpretations for K and dK (adaptable for J and dJ)

Assume the classical interpretations of {∧,∨,→,(} over {0, 1}.
Interpret ⊥> non-deterministically by setting
⊥> : ∅ −→ {0, 1}, i.e., allow v(⊥>) ∈ {0, 1}.
You may now in fact define:
^α

def
== α→ ⊥>

_α
def
== α(⊥>

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

A Non-deterministic Approach

Example (On negation)

Paraconsistent:

α ^ α

0 {1}
1 {0, 1}

Paracomplete:

α _ α

0 {0, 1}
1 {0}

Interpretations for K and dK (adaptable for J and dJ)

Assume the classical interpretations of {∧,∨,→,(} over {0, 1}.
Interpret ⊥> non-deterministically by setting
⊥> : ∅ −→ {0, 1}, i.e., allow v(⊥>) ∈ {0, 1}.
You may now in fact define:
^α

def
== α→ ⊥>

_α
def
== α(⊥>

J. Marcos (LoLITA/DIMAp, UFRN, BR) Simulating Negation in Positive Logic Logic Colloquium 2009 7 / 7

	Positive Environments?
	Experimenting with Logical Systems
	Semantics

