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Spectrum of a Structure

Defns: For a countable structure S with domain

ω, the Turing degree of S is the Turing degree of

the atomic diagram of S. The spectrum of S is

Spec(S) = {deg(A) : A ∼= S}

of all Turing degrees of copies of S.

For a relation R on a computable structure M,

the spectrum of R, DgSpM(R), is

{deg(f(R)) : f : M ∼= N & N is computable}.
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Non-low Degrees

Theorem (Slaman; Wehner; Hirschfeldt): There

exists a structure whose spectrum contains every

Turing degree > 0, but not the degree 0.

This also holds with an arbitrary d in place of 0.

Theorem (GHKMMS): For each n ∈ ω, there

exists a structure whose spectrum contains

precisely the non-lown degrees. Indeed, for each

computable successor ordinal α, there exists a

structure with spectrum

{deg(X) : (∃d /∈ ∆0

α)[d is ∆0
α relative to X]}.
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High Degrees

Given a structure A, the technique of

(GHKMMS) builds, for each successor ordinal α,

a structure B such that

c ∈ Spec(B) ⇐⇒ c
(α) ∈ Spec(A).

Fact: For every d, there is a structure Ad with

spectrum {c : c ≥T d}.

So with α = 1 and d = 0′′, this gives a structure

B whose spectrum contains exactly the

high-or-above degrees (those c with c
′ ≥T 0′′).

Likewise for highn, and even highα (with

α /∈ LOR). This extends a known result...
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Spectrum of high degrees

Proposition (Harizanov-Miller): There exists a

relation R on a computable dense linear order Q

with

DgSpQ(R) = {d : d′ ≥T 0′′}.

Corollary: There exists a structure with this

same spectrum.

Corollary: Not all spectra of unary relations on

(Q, <) can be realized as spectra of linear orders.

Proof : By a theorem of Knight (1986), 0′ is the

only possible jump degree of a linear order.
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How About Linear Orders?

For Boolean algebras, the spectrum {d : d > 0} is

impossible.

• Jockusch-Soare: For every c.e. d > 0, there

exists a linear order whose spectrum contains

d but not 0.

• Downey/Seetapun: Extension to any d with

0 < d ≤ 0′.

• Knight: Extension to any d > 0.

• M.: There is a single linear order whose

spectrum contains all d with 0 < d ≤ 0′, but

not 0.

• Frolov: For each n ∈ ω, there is a linear order

whose spectrum contains all non-lown degrees

≤ 0′ but no lown degrees.

Question: Can a linear order have a spectrum of

precisely the non-lown degrees?
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Where Next?

Frolov’s result builds an order L by relativizing

Miller’s result to 0(n), so that Spec(L) contains

all d with 0(n) < d ≤ 0(n+1), but not 0(n).

Then it applies the relativization of a theorem of

Downey and Knight: A linear order L is ∆0
2 iff

(η + 2 + η) · L is computable.

So the order Ln = (η + 2 + η)n · L has all

non-lown degrees below 0′ in its spectrum, but no

lown degree.
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Spectral Universality

An embedding f : A →֒ B preserves the spectrum

if Spec(A) = DgSpB(f(A)).

A computable model B of a theory T is spectrally

universal for T if every countable model A of T

embeds into B via some f preserving the

spectrum.

Many (but not all!) computable Fräıssé limits of

theories turn out to be spectrally universal for

those theories. Examples:

• Countable dense linear order.

• Random graph.

• Countable atomless Boolean algebra.

Counterexample:

• Algebraic closure of the field Z/(p).
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Structures vs. Relations

Corollary (of the spectral universality of the

random graph): The spectra of countable graphs

are precisely the spectra of unary relations on the

random graph.

We saw above that this does not hold of linear

orders. Spectral universality of the countable

DLO shows that every spectrum of a LO is the

spectrum of a unary relation on the DLO, but the

converse is false.
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New Possible Counterexample

Theorem (M.): There exists a unary relation R̃

on the countable DLO (Q,≺) whose degree

spectrum contains the non-low degrees:

DgSpQ(R̃) = {d : d′ >T 0′}.

For a given finite set F = {n1, n2, . . . , nk} ⊂ ω

and a ≺ b in Q, define R̃ on (a, b) for F as follows:

Wehner’s construction gives a family F of finite

sets F , uniformly enumerable by any degree > 0′,

but not by 0′.

For each F ∈ F , in each order, define R̃ as above

for this F on densely many intervals (a, b) in Q.
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Does this work?

This R̃ on (Q,≺) gives a potential second

counterexample to the converse of spectral

universality for linear orders.

Question: Does there exist a linear order with

spectrum {c : c
′ >T 0′}?

Notice that the restriction of ≺ to R̃ does not

yield such an order.

11



'

&

$

%

Fields

Example: Fix r0 = e and ri+1 = eri . Given

S ⊆ ω, let FS be the closure of Q(rt | t ∈ S) under

square roots of positive elements. We claim that

Spec(FS) = {d : S is Σ0
2 in d}.

Cor.: For any A ⊆ ω, there is a field whose

spectrum contains precisely those d with A ≤ d
′.

Spec(FA′) = {d : (∃D ∈ d)A′ ≤1 D′′}

= {d : (∃D ∈ d)A ≤T D′}

As a relation on its algebraic closure, FS has the

same spectrum {d : S is Σ0
2 in d}.

So the high degrees form the spectrum of a field,

and also the spectrum of a subfield of the

algebraic closure.
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Spec(FS) = {d : S is Σ0

2
in d}.

⊆: If E ∼= FS , then S is the set

{t ∈ ω : (∃x ∈ E)(∀q ∈ Q)[q < rt ↔ q ≺ x in E]}.

The order ≺ on E is E-computable, by the closure

of E under square roots of positive elements.

⊇: If S ≤1 FinD, let t ∈ S iff W D

h(t) is finite. Start

building Fω (the field containing all rt). Each

time W D

h(t) receives an element, make the old rt

become rational and add a new rt to replace it.
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