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Prompt enumerations

The promptly simple c.e. Turing degrees:

• decomposition of c.e. T-degrees into definable filter and definable ideal

• characterisation of structural properties:

Theorem (Ambos-Spies, Jockusch, Shore, Soare 1984)

For a c.e. degree a, TFAE:

I a is PS;

I a is non-cappable: 6 ∃b > 0 s.t. a ∩ b = 0;

I a is low cuppable: ∃b, b′ = 0′, a ∪ b = 0′.



Permitting

Given c.e. set A, build B so that

B � n changes at stage s only if A � n changes at s.

Guarantees that B ≤T A.



(Yates) permitting

Let A be a noncomputable c.e. set.

If W is infinite c.e. set, then

∃∞x : x ∈W [at s] and A[s] � x 6= A � x .

A � x changes sometime after x is enumerated into W.



Prompt permitting

A is promptly permitting if there is computable function p such that

if W is infinite c.e. set, then

∃∞x : x ∈W [at s] and A[s] � x 6= A[p(s)] � x .

A � x changes within computable time interval [s, p(s)].

Degree a is PS iff all c.e. sets in a are promptly permitting.



Promptly permitting sets

Such sets exist; standard constructions automatically yield promptly

permitting sets.

Not all c.e. sets are promptly permitting: minimal pairs are not PS by

AJSS theorem.



Randomness

For U ⊆ 2<ω, weight U =
∑

σ∈U 2−|σ|.

Solovay test: A c.e. set of sets of strings S such that weight S <∞
(bounded).

X is random if for all Solovay tests S

/∃∞σ ∈ S with σ ⊂ X .

Only finitely many approximations to X in S .

Universal Solovay test: There is a single test U s.t. X is random iff

/∃∞σ ∈ S with σ ⊂ X .
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Relative randomness

Relativise notions of Solovay test, randomness to arbitrary oracle A.

Study information content of oracle A by examining the class of

A-randoms.

Low-for-random: A-randomness = unrelativised randomness.

A is no help at all for detecting patterns.
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Important characterisation:

Theorem (Kjos-Hanssen)

TFAE:

I A is low for random

I every bounded A-c.e. set is contained in an unrelativised bounded

c.e. set

I UA is contained in a bounded c.e. set: there is a c.e. set V s.t.

UA ⊆ V and weight V <∞.



Non-low-for-random permitting

If A is not low-for-random, then

UA ⊆ V ⇒ weight V =∞.

We can trace strings from UA into c.e. set V .

A must change sufficiently often to remove strings from UA to ensure

weight V =∞.

Suppose σ ∈ UA[s] with use u.

When we want A � u to change, put σ into V .

If A � u changes, σ ∈ V but σ /∈ UA. Successful permission!

σ ∈ V [at s], σ ∈ UA[s] with use u, A[s] � u 6= A � u.

If A � u does not change, σ ∈ UA permanently. Unsuccessful permission,

but bounded by weight UA <∞.
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Prompt non-low-for-random permitting

Let’s define a notion of prompt non-lfr permitting, in analogy with

prompt Yates permitting.

‘exists infinitely many’ becomes ‘exists infinite weight’.

Definition

A is promptly non-low-for-random if there is UA and computable p s.t.

if UA ⊆ V then the set of σ such that

σ ∈ V [at s], σ ∈ UA[s] with use u, A[s] � u 6= A[p(s)] � u

has infinite weight.
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Some results

Prompt non-low-for-randoms exist: standard construction.

Prompt non-lfr implies promptly simple.

Non-prompt non-low-for-randoms exist:

I low-for-randoms

I non-promptly simples

I non-lfr, promptly simple but not promptly non-low-for-randoms.

Closed upwards under ≤T but...unknown if they form a filter

→ simultaneously permit below two sets?
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Structural properties?

Would be nice to find correspondences with structural properties.

Low-for-random cuppable: A can be cupped to 0′ by a low-for-random.

Not all pnlfr’s are low-for-random cuppable.

Diamondstone: exists a promptly simple that is not superlow cuppable.

Can be extended to pnlfr that is not superlow cuppable.

But all low-for-randoms are superlow.

Cappable to low-for-randoms: exists non-lfr B such that if X ≤T A,B

then X is low-for-random.

Obstacles with gap-cogap method in this context.

Work in progress.
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