Determinacy of Wadge classes in Baire space and simple iteration of inductive definition

Takako Nemoto
Mathematical Institute, Tohoku Unversity, Japan

August 4, 2009

Abstract

Determinacy of Wadge classes in the Cantor space below $\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$ make a nice hierarchy. In this talk, we consider determinacy of those classes in the Baire space.

1. Outline of this talk

- Determinacy?
- Second order arithmetic?
-Wadge classes?
- Determinacy of Wadge classes in the Cantor space
- Determinacy of Wadge classes in the Baire space
- $\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \Sigma_{2}^{0}$-Det
- $\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$-Det and Σ_{1}^{1}-TID

2. Infinite games?

Let X be either \mathbb{N} or $\{0,1\}$.
For a given formula $\varphi(f)$,

- Players I and II alternately choose $x \in X$ to form $f \in X^{\mathbb{N}}$.

$$
\begin{array}{llllll}
\text { I } & f(0) & & f(2) & & f(4) \\
\text { II } & & f(1) & & f(3) & \\
& & f(5) & \ldots
\end{array}
$$

2. Infinite games?

Let X be either \mathbb{N} or $\{0,1\}$.
For a given formula $\varphi(f)$,

- Players I and II alternately choose $x \in X$ to form $f \in X^{\mathbb{N}}$.

$$
\begin{array}{llllll}
\text { I } & f(0) & & f(2) & & f(4) \\
\text { II } & & f(1) & & f(3) & \\
& & f(5) & \ldots
\end{array}
$$

- I wins iff $\varphi(f)$.

2. Infinite games?

Let X be either \mathbb{N} or $\{0,1\}$.
For a given formula $\varphi(f)$,

- Players I and II alternately choose $x \in X$ to form $f \in X^{\mathbb{N}}$.

$$
\left.\begin{array}{lllllll}
\text { I } & f(0) & & f(2) & & f(4) & \ldots \\
\text { II } & & f(1) & & f(3) & & f(5)
\end{array}\right]
$$

- I wins iff $\varphi(f)$.
- If one of the players has a winning strategy in the above game, $\varphi(f)$ is determinate.

3. Classes of games

Define classes of L_{2} formulas as follows:

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;
- $\varphi \equiv \exists X \theta(X)$ is Σ_{k+1}^{1} if θ is Π_{k}^{1};

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;
- $\varphi \equiv \exists X \theta(X)$ is Σ_{k+1}^{1} if θ is Π_{k}^{1};
- φ is Π_{k+1}^{i} if it is of the form $\neg \psi$ for some $\psi \in \Sigma_{k}^{i}$.

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;
- $\varphi \equiv \exists X \theta(X)$ is Σ_{k+1}^{1} if θ is Π_{k}^{1};
- φ is Π_{k+1}^{i} if it is of the form $\neg \psi$ for some $\psi \in \Sigma_{k}^{i}$.
- φ is Δ_{n}^{i} if it is Σ_{n}^{i} and $\varphi \leftrightarrow \psi$ for some $\psi \in \Pi_{n}^{i}$.

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;
- $\varphi \equiv \exists X \theta(X)$ is Σ_{k+1}^{1} if θ is Π_{k}^{1};
- φ is Π_{k+1}^{i} if it is of the form $\neg \psi$ for some $\psi \in \Sigma_{k}^{i}$.
- φ is Δ_{n}^{i} if it is Σ_{n}^{i} and $\varphi \leftrightarrow \psi$ for some $\psi \in \Pi_{n}^{i}$.
- $\varphi \equiv \psi \wedge \eta$ is $\Gamma \wedge \Gamma^{\prime}$ if $\psi \in \Gamma$ and $\eta \in \Gamma^{\prime}$

3. Classes of games

Define classes of L_{2} formulas as follows:

- φ is Π_{0}^{0} if it is built up from atomic formulas by means of $\wedge, \vee, \neg, \rightarrow$ and bounded number quantifiers;
- $\varphi \equiv \exists n \theta(n)$ is Σ_{k+1}^{0} if θ is Π_{k}^{0};
- φ is Π_{0}^{1} if it does not contain any set quantifiers;
- $\varphi \equiv \exists X \theta(X)$ is Σ_{k+1}^{1} if θ is Π_{k}^{1};
- φ is Π_{k+1}^{i} if it is of the form $\neg \psi$ for some $\psi \in \Sigma_{k}^{i}$.
- φ is Δ_{n}^{i} if it is Σ_{n}^{i} and $\varphi \leftrightarrow \psi$ for some $\psi \in \Pi_{n}^{i}$.
- $\varphi \equiv \psi \wedge \eta$ is $\Gamma \wedge \Gamma^{\prime}$ if $\psi \in \Gamma$ and $\eta \in \Gamma^{\prime}$
Γ determinacy asserts that every $\varphi(f) \in \Gamma$ is determinate.

4. Base theory RCA_{0}

An L_{2}-theory RCA_{0} consists of:

4. Base theory RCA_{0}

An L_{2}-theory RCA_{0} consists of:

Basic arithmetic

Successor $n+1 \neq 0, \quad n+1=m+1 \rightarrow n=m$, Addition $n+0=n, \quad n+(m+1)=(n+m)+1$, Multiplication $n \cdot 0=0, \quad n \cdot(m+1)=n \cdot m+n$, Order $\neg m<0, \quad m<n+1 \leftrightarrow m \leq n$,

4. Base theory RCA_{0}

An L_{2}-theory RCA_{0} consists of:

Basic arithmetic

Successor $n+1 \neq 0, \quad n+1=m+1 \rightarrow n=m$, Addition $n+0=n, \quad n+(m+1)=(n+m)+1$, Multiplication $n \cdot 0=0, \quad n \cdot(m+1)=n \cdot m+n$, Order $\neg m<0, \quad m<n+1 \leftrightarrow m \leq n$,
Σ_{1}^{0} induction
$\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \varphi(n)$, for $\varphi \in \Sigma_{1}^{0}$.

4. Base theory RCA_{0}

An L_{2}-theory RCA_{0} consists of:

Basic arithmetic

Successor $n+1 \neq 0, \quad n+1=m+1 \rightarrow n=m$,
Addition $n+0=n, \quad n+(m+1)=(n+m)+1$,
Multiplication $n \cdot 0=0, \quad n \cdot(m+1)=n \cdot m+n$,
Order $\neg m<0, \quad m<n+1 \leftrightarrow m \leq n$,
Σ_{1}^{0} induction
$\varphi(0) \wedge \forall n(\varphi(n) \rightarrow \varphi(n+1)) \rightarrow \forall n \varphi(n)$, for $\varphi \in \Sigma_{1}^{0}$.
Δ_{1}^{0} comprehension

$$
\begin{aligned}
& \forall n(\varphi(n) \leftrightarrow \psi(n)) \rightarrow \exists X(\varphi(n) \leftrightarrow n \in X), \\
& \text { for } \varphi \in \Sigma_{1}^{0} \text { and } \psi \in \Pi_{1}^{0} .
\end{aligned}
$$

5. Table of determinacy

We have the following equivalences over RCA_{0} :

System
 Det. in $2^{\mathbb{N}}\left(-\right.$ Det $\left.^{*}\right)$
 Det. in $\mathbb{N}^{\mathbb{N}}$ (-Det)

ATR ${ }_{0}$
$\Delta_{2}^{0}, \Sigma_{2}^{0}$
$\Delta_{1}^{0}, \Sigma_{1}^{0}$
ATR $_{0}+\Sigma_{1}^{1}-\operatorname{lnd}$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$
$\Pi_{1}^{1}-\mathrm{CA}_{0}$
$\operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{1}^{0}\right), \Sigma_{1}^{0} \wedge \Pi_{1}^{0}$
$\Pi_{1}^{1}-\mathrm{TR}_{0}$
$\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$
Δ_{2}^{0}
Σ_{1}^{1} IID
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$
Σ_{2}^{0}
$\left[\Sigma_{1}^{1}\right]^{2}-$ ID
$\left(\Sigma_{2}^{0} \wedge \Pi_{2}^{0}\right) \vee \Sigma_{2}^{0}$
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$

6. Subsystems of second order arithmetic

ATR $_{0} \mathrm{RCA}_{0}+$ arithmetical transfinite recursion:
"For any arithmetical operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."

6. Subsystems of second order arithmetic

ATR $_{0} \mathrm{RCA}_{0}+$ arithmetical transfinite recursion:
"For any arithmetical operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."
$\Pi_{1}^{1}-\mathrm{CA}_{0} \mathrm{RCA}_{0}+\Pi_{1}^{1}$ comprehension:
"For any Π_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a set W, we have $\Psi(W)$ "

6. Subsystems of second order arithmetic

ATR $_{0} \mathrm{RCA}_{0}+$ arithmetical transfinite recursion:
"For any arithmetical operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."
$\Pi_{1}^{1}-\mathrm{CA}_{0} \mathrm{RCA}_{0}+\Pi_{1}^{1}$ comprehension:
"For any Π_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a set W, we have $\Psi(W)$ "
$\Pi_{1}^{1}-\mathrm{TR}_{0} \mathrm{RCA}_{0}+\Pi_{1}^{1}$ transfinite recursion:
"For any Π_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."

6. Subsystems of second order arithmetic

ATR $_{0} \mathrm{RCA}_{0}+$ arithmetical transfinite recursion:
"For any arithmetical operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."
$\Pi_{1}^{1}-\mathrm{CA}_{0} \mathrm{RCA}_{0}+\Pi_{1}^{1}$ comprehension:
"For any Π_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a set W, we have $\Psi(W)$ "
$\Pi_{1}^{1}-\mathrm{TR}_{0} \mathrm{RCA}_{0}+\Pi_{1}^{1}$ transfinite recursion:
"For any Π_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ and a well-ordering X, we can iterate Ψ along X."
$\Sigma_{1}^{1}-\mathrm{ID}_{0} \mathrm{RCA}_{0}+\Sigma_{1}^{1}$ inductive definition:
"For any Σ_{1}^{1} operator $\Psi: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$, we have a fixed point, i.e., W s.t. $\Psi(W)=W^{\prime \prime}$

5. Table of determinacy

We have the following equivalences over RCA_{0} :

System Det. in $2^{\mathbb{N}}\left(-\right.$ Det $\left.^{*}\right)$
 Det. in $\mathbb{N}^{\mathbb{N}}(-$ Det $)$

ATR ${ }_{0}$

$$
\Delta_{2}^{0}, \Sigma_{2}^{0}
$$

$\Delta_{1}^{0}, \Sigma_{1}^{0}$
ATR $_{0}+\Sigma_{1}^{1}-\operatorname{lnd}$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$
$\Pi_{1}^{1}-\mathrm{CA}_{0}$
$\operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{1}^{0}\right), \Sigma_{1}^{0} \wedge \Pi_{1}^{0}$
$\Pi_{1}^{1}-\mathrm{TR}_{0}$
$\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$
Δ_{2}^{0}
Σ_{1}^{1}-ID
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$
Σ_{2}^{0}
$\left[\Sigma_{1}^{1}\right]^{2}-\mathrm{ID}$
$\left(\Sigma_{2}^{0} \wedge \Pi_{2}^{0}\right) \vee \Sigma_{2}^{0}$
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$

7. Wadge reducibility?

For given $A, B \subseteq X^{\mathbb{N}}$, which is "simpler?" We say A is Wadge reducible to B if there is a continuous function $f: X^{\mathbb{N}} \rightarrow X^{\mathbb{N}}$ with $f^{-1}(B)=A$.

8. Description of Wadge classes

$\operatorname{Sep}\left(\Gamma, \Gamma^{\prime}\right)$

$$
\left(\psi(f) \wedge \eta_{0}(f)\right) \vee\left(\neg \psi(f) \wedge \neg \eta_{1}(f)\right)
$$

$$
\left.\begin{array}{c}
\Sigma_{2}^{0} \wedge \Pi_{2}^{0} \\
\vdots \\
\vdots \\
\operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right) \\
\vdots \\
\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right) \\
\Sigma_{2}^{0} \\
\vdots \\
\left(\Sigma_{1}^{0} \wedge \Pi_{1}^{0}\right) \\
\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{1}^{0}\right) \\
\Sigma_{1}^{0} \\
\Delta_{1}^{0}
\end{array}\right\} \operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)
$$

Remark: $\operatorname{Sep}\left(\Delta_{n}^{0}, \Sigma_{n}^{0}\right)=\neg\left(\Sigma_{n}^{0} \wedge \Pi_{n}^{0}\right) \cap\left(\Sigma_{n}^{0} \wedge \Pi_{n}^{0}\right)$.

5. Table of determinacy

We have the following equivalences over RCA_{0} :

System Det. in $2^{\mathbb{N}}\left(-\right.$ Det $\left.^{*}\right)$
 Det. in $\mathbb{N}^{\mathbb{N}}(-$ Det $)$

ATR ${ }_{0}$

$$
\Delta_{2}^{0}, \Sigma_{2}^{0}
$$

$\Delta_{1}^{0}, \Sigma_{1}^{0}$
ATR $_{0}+\Sigma_{1}^{1}-\operatorname{lnd}$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$
$\Pi_{1}^{1}-\mathrm{CA}_{0}$
$\operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{1}^{0}\right), \Sigma_{1}^{0} \wedge \Pi_{1}^{0}$
$\Pi_{1}^{1}-\mathrm{TR}_{0}$
$\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$
Δ_{2}^{0}
Σ_{1}^{1}-ID
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$
Σ_{2}^{0}
$\left[\Sigma_{1}^{1}\right]^{2}-\mathrm{ID}$
$\left(\Sigma_{2}^{0} \wedge \Pi_{2}^{0}\right) \vee \Sigma_{2}^{0}$
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$
9. $\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \Sigma_{1}^{1}-I \mathrm{D}_{0}$

Theorem
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$-Det $\Leftrightarrow \Sigma_{2}^{0}$-Det $\Leftrightarrow \Sigma_{1}^{1}$ IID
Proof is similar to the case of the Cantor space.
Key point of Proof
Actually, for any Σ_{2}^{0} game $\varphi(f), \Sigma_{1}^{1}-\mathrm{ID}_{0}$ proves the existence of the winning set W for player I, i.e.,

- $s \in W \rightarrow$ Player I wins $\varphi(f)$ at s
- $s \notin W \rightarrow$ Player II wins $\varphi(f)$ at s

By the above W, we can reduce $\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$ and $\operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right)$ games to Δ_{1}^{0} and $\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ game, respectively.

10. A New table of determinacy

We have the following equivalences over RCA_{0} :

System Det. in $2^{\mathbb{N}}\left(-\right.$ Det $\left.^{*}\right)$
 Det. in $\mathbb{N}^{\mathbb{N}}$ (-Det)

ATR ${ }_{0}$

$$
\Delta_{2}^{0}, \Sigma_{2}^{0}
$$

$\Delta_{1}^{0}, \Sigma_{1}^{0}$
$\mathrm{ATR}_{0}+\Sigma_{1}^{1}-\operatorname{lnd}$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$

$$
\begin{array}{ccc}
\Pi_{1}^{1}-\mathrm{CA}_{0} & \operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right) & \operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{1}^{0}\right), \Sigma_{1}^{0} \wedge \Pi_{1}^{0} \\
\Pi_{1}^{1}-\mathrm{TR}_{0} & \operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right) & \Delta_{2}^{0} \\
\Sigma_{1}^{1} \text {-ID } & \Sigma_{2}^{0} \wedge \Pi_{2}^{0} & \Sigma_{2}^{0}, \operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right), \operatorname{Sep}\left(\Sigma_{1}^{0}, \Sigma_{2}^{0}\right) \\
{\left[\Sigma_{1}^{1}\right]^{2}-\mathrm{ID}} & \left(\Sigma_{2}^{0} \wedge \Pi_{2}^{0}\right) \vee \Sigma_{2}^{0} & \Sigma_{2}^{0} \wedge \Pi_{2}^{0}
\end{array}
$$

10. A New table of determinacy

We have the following equivalences over RCA_{0} :

System Det. in $2^{\mathbb{N}}\left(-\right.$ Det $\left.^{*}\right)$
 Det. in $\mathbb{N}^{\mathbb{N}}$ (-Det)

ATR 0

$$
\Delta_{2}^{0}, \Sigma_{2}^{0}
$$

$\Delta_{1}^{0}, \Sigma_{1}^{0}$
ATR $_{0}+\Sigma_{1}^{1}-\operatorname{lnd}$
$\operatorname{Sep}\left(\Delta_{1}^{0}, \Sigma_{2}^{0}\right)$
$\Pi_{1}^{1}-\mathrm{CA}_{0}$
$\Pi_{1}^{1}-\mathrm{TR}_{0}$
Σ_{1}^{1}-ID

$\left[\Sigma_{1}^{1}\right]^{2}-\mathrm{ID}$
$\left(\Sigma_{2}^{0} \wedge \Pi_{2}^{0}\right) \vee \Sigma_{2}^{0}$
$\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$
11. $\Sigma_{1}^{1}-\mathrm{TID}$
Σ_{1}^{0} transfinite inductive definition (Σ_{1}^{0}-TID)
"For any well ordering X and sequence $\left\langle\Psi_{x}: x \in X\right\rangle$, we have the sequence of set $\left\langle W_{x}: x \in X\right\rangle$ s.t.
$W_{x}=$ the fixed point of Ψ_{x} starting with $\bigcup_{y<x} W_{y}$
$\emptyset \xrightarrow{\text { iteration of } \Psi_{0}}$ a fixed point W_{0} of Ψ_{0}
$W_{0} \xrightarrow{\text { iteration of } \Psi_{1}}$ a fixed point W_{1} of Ψ_{1}
12. $\Sigma_{1}^{1}-\mathrm{TID}$ and $\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$-Det

Theorem $\mathrm{RCA}_{0}+\Sigma_{1}^{1}$-TID proves $\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$-Det Idea for the proof

- Δ_{2}^{0} formula can be expressed as a disjoint union of transfinitely many $\Sigma_{1}^{0} \wedge \Pi_{1}^{0}$ formulas.
- Therefore, $\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$ game $\left(\psi(f) \wedge \eta_{0}(f)\right) \vee\left(\neg \psi(f) \wedge \eta_{1}(f)\right)$ can be expressed as a disjoint union of transfinitely many Σ_{2}^{0} and Π_{2}^{0} formulas.
- Since, for any Σ_{2}^{0} game, Σ_{1}^{1}-ID yields the winning set for playse I, iteration of Σ_{1}^{1} inductive definition yields the winning set for player I in a $\operatorname{Sep}\left(\Delta_{2}^{0}, \Sigma_{2}^{0}\right)$ game.

13. Strength of Σ_{1}^{1}-TID

By modifying the proof of Σ_{2}^{0}-Det $\rightarrow \Sigma_{1}^{1}$-ID, we may have the proof of the following conjecture:

Conjecture Σ_{1}^{1}-TID is equivalent to Σ_{1}^{1}-ID over RCA $_{0}$.
If the above conjecture is true, there is no hierarchy of determinacy between Σ_{2}^{0} and $\Sigma_{2}^{0} \wedge \Pi_{2}^{0}$ game in the Baire space, contrary to the case of the Cantor space.

References

- MedYahya Ould MedSalem and Kazuyuki Tanaka, Δ_{3}^{0} determinacy, comprehension and induction, Journal of Symbolic Logic, 72 (2007) pp. 452-462.
- Takako Nemoto, Determinacy of Wadge classes and subsystems of second order arithmetic, Mathematical Logic Quarterly, 55 (2009) pp. 154-176.
- Takako Nemoto, Corrigendum to "Determinacy of Wadge classes and subsystems of second order arithmetic," preprint, available at http://www.math.tohoku.ac.jp/~sa4m20/corrigendum.pdf
- S.G. Simpson, Subsystems of Second Order Arithmetic, Springer (1999).
- K. Tanaka, Weak axioms of determinacy and subsystems of analysis I: Δ_{2}^{0}-games, Z. Math. Logik Grundlag. 36 (1990), pp. 481-491.

