Generalized Luzin sets

Robert Rałowski and Szymon Żeberski

Logic Colloquium, Sofia 2009

(ロ)、(型)、(E)、(E)、 E) の(()

Definition (Cardinal coefficients) For any $I \subset \mathscr{P}(X)$ let $non(I) = min\{|A| : A \subset X \land A \notin I\}$ $add(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land [] \mathscr{A} \notin I\}$ $cov(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land []\mathscr{A} = X\}$ $cov_h(I) = min\{|\mathscr{A}| : (\mathscr{A} \subset I) \land (\exists B \in Bor(X) \setminus I) (| |\mathscr{A} = B)\}$ $cof(I) = min\{|\mathscr{A}| : \mathscr{A} \subset I \land \mathscr{A} - borel base of I\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 $\mathbb{K} - \sigma \text{ ideal of meager sets} \\ \mathbb{L} - \sigma \text{ ideal of null sets}$

Let $I, J \subset \mathscr{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

► *L* ∉ *I*

 $\blacktriangleright (\forall B \in I) B \cap L \in J$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $I, J \subset \mathscr{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

- ► *L* ∉ *I*
- $\blacktriangleright (\forall B \in I) B \cap L \in J$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

Let $I, J \subset \mathscr{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

$$(\forall B \in I) \ B \cap L \in J$$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $I, J \subset \mathscr{P}(X)$ are σ - ideals on Polish space X with Borel base. We say that $L \subset X$ is a (I, J) - Luzin set if

$$(\forall B \in I) \ B \cap L \in J$$

If in addition the set L has cardinality κ then L is (κ, I, J) - Luzin set.

Definition

An ideals I and J are orthogonal in Polish space X if

$$\exists A \in \mathscr{P}(X) \ A \in I \land A^c \in J$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Let $\mathscr{F} \subset X^X$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f,g\in\mathscr{F})\ (B=f[A]\wedge A=g[B])$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

 $\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$

Let $\mathscr{F} \subset X^X$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f,g\in\mathscr{F})\ (B=f[A]\wedge A=g[B])$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

 $\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $\mathscr{F} \subset X^X$ be any family of functions on the Polish space X. We say that $A, B \subset X$ are equivalent respect to \mathscr{F} if

$$(\exists f,g\in\mathscr{F})\ (B=f[A]\wedge A=g[B])$$

Definition

We say that $A, B \subset X$ are Borel equivalent if A, B are equivalent respect to the family of all Borel functions.

Definition

We say that σ - ideal I has Fubini property iff for every Borel set $A \subset X \times X$

$$\{x \in X : A_x \notin I\} \in I \Longrightarrow \{y \in X : A^y \notin I\} \in I$$

Fact

Assume that $I \perp J$.

1. There exist a (I, J) - Luzin set.

2. If L is a (I, J) - Luzin set then L is not (J, I) - Luzin set.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Bukovski) If there are $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ and $(\lambda, \mathbb{L}, [\mathbb{R}]^{<\lambda})$ - Luzin sets then

$$\kappa = cov(\mathbb{K}) = non(\mathbb{K}) = non(\mathbb{L}) = cov(\mathbb{L}) = \lambda.$$

Theorem (Bukovski) If $\kappa = cov(\mathbb{K}) = cof(\mathbb{K})$ then there exists $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ - Luzin set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem (Bukovski) If there are $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ and $(\lambda, \mathbb{L}, [\mathbb{R}]^{<\lambda})$ - Luzin sets then

$$\kappa = cov(\mathbb{K}) = non(\mathbb{K}) = non(\mathbb{L}) = cov(\mathbb{L}) = \lambda.$$

Theorem (Bukovski)

If $\kappa = cov(\mathbb{K}) = cof(\mathbb{K})$ then there exists $(\kappa, \mathbb{K}, [\mathbb{R}]^{<\kappa})$ - Luzin set.

If $\kappa = \operatorname{cov}_h(I) = \operatorname{cof}(I) \le \operatorname{non}(J)$ and κ is regular then there exists (κ, I, J) - Luzin set.

PROOF Let us enumerate Borel base of *I* witnessing that $\kappa = cof(I) \mathcal{B}_I = \{B_\alpha : \alpha < \kappa\}.$

For $\alpha < \kappa$ step, let $L_{\alpha} \subset X$ is just constructed and let us choose

$$x_{\alpha} \in X \setminus (L_{\alpha} \cup \bigcup_{\xi < \alpha} B_{\xi})$$

what is possible by $cov_h(I) = cof(I)$. Let $L = \bigcup_{\alpha < \kappa} L_{\alpha}$ If $A \in I$ then there exists $\alpha < \kappa$ s.t. $A \subset B_{\alpha}$. Then we have

$$A \cap L \subset B_{\alpha} \cap L = B_{\alpha} \cap L_{\alpha} \subset L_{\alpha} \in J$$

because $|L_{\alpha}| < \kappa \leq non(J)$

If $\kappa = \operatorname{cov}_h(I) = \operatorname{cof}(I) \le \operatorname{non}(J)$ and κ is regular then there exists (κ, I, J) - Luzin set.

PROOF Let us enumerate Borel base of I witnessing that $\kappa = cof(I) \ \mathscr{B}_I = \{B_\alpha : \ \alpha < \kappa\}.$ For $\alpha < \kappa$ step, let $L_\alpha \subset X$ is just constructed and let us choose

$$x_{lpha} \in X \setminus (L_{lpha} \cup \bigcup_{\xi < lpha} B_{\xi})$$

what is possible by $cov_h(I) = cof(I)$. Let $L = \bigcup_{\alpha < \kappa} L_\alpha$ If $A \in I$ then there exists $\alpha < \kappa$ s.t. $A \subset B_\alpha$. Then we have

$$A \cap L \subset B_{\alpha} \cap L = B_{\alpha} \cap L_{\alpha} \subset L_{\alpha} \in J$$

because $|L_{\alpha}| < \kappa \leq non(J)$

Corollary If CH holds then there exists (ω_1, I, J) - Luzin set.

Theorem

Assume that CH holds. Let $\mathscr{F} \subset X^X$ such that $|\mathscr{F}| \leq \omega_1$ then there exists continuum many different (ω_1, I, J) - Luzin sets which are nt eqivalent respect to the family \mathscr{F} .

Corollary

If CH holds then there exists continuum many different (c, I, J) -Luzin sets which are'nt Borel eqivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

If CH holds then there exists (ω_1, I, J) - Luzin set.

Theorem

Assume that CH holds. Let $\mathscr{F} \subset X^X$ such that $|\mathscr{F}| \leq \omega_1$ then there exists continuum many different (ω_1, I, J) - Luzin sets which are'nt eqivalent respect to the family \mathscr{F} .

Corollary

If CH holds then there exists continuum many different (c, I, J) -Luzin sets which are'nt Borel eqivalent.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

If CH holds then there exists (ω_1, I, J) - Luzin set.

Theorem

Assume that CH holds. Let $\mathscr{F} \subset X^X$ such that $|\mathscr{F}| \leq \omega_1$ then there exists continuum many different (ω_1, I, J) - Luzin sets which are'nt eqivalent respect to the family \mathscr{F} .

Corollary

If CH holds then there exists continuum many different (c, I, J) -Luzin sets which are'nt Borel eqivalent.

Proof of Theorem:

Let us enumerate the Borel base of ideal I and the family \mathscr{F} :

$$\mathscr{B}_{\mathsf{I}} = \{B_lpha: \ lpha < \omega_1\} ext{ and } \mathscr{F} = \{f_lpha: lpha < \omega_1\}$$

By induction let us construct a family $\{L_{\beta} : \beta < \omega_1\}$ with

- 1. for $\beta < \omega_1 \ L_{\beta} = \{x_{\xi}^{\beta} : \xi < \omega_1\}$ is a (I, J) Luzin set,
- 2. for each α and $\beta_1 \neq \beta_2$ $f_{\alpha}[L_{\beta_1}] \neq L_{\beta_2}$.

It is possible because in α step we can find

$$x_{\alpha}^{\xi} \in X \setminus \left(\{ x_{\xi}^{\eta} : \xi, \eta < \alpha \} \cup \{ f_{\beta}(x_{\xi}^{\eta} : \beta, \xi, \eta < \alpha) \} \cup \bigcup_{\xi < \alpha} B_{\xi} \right)$$

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

for any $\xi < \alpha$.

- Each Lebesgue measurable function is equal to some Borel function on the set of full measure,
- each Baire-measurable function is equal to some Borel function on the comeager set.

Corollary

Assume CH.

- There exists continuum many different (ω₁, L, K) Luzin sets which aren't equivalent with respect to the family of Lebesgue - measurable functions.
- 2. There exists continuum many different $(\omega_1, \mathbb{K}, \mathbb{L})$ Luzin sets which aren't equivalent with respect to the family of Baire measurable functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Each Lebesgue measurable function is equal to some Borel function on the set of full measure,
- each Baire-measurable function is equal to some Borel function on the comeager set.

Corollary

Assume CH.

- There exists continuum many different (ω₁, L, K) Luzin sets which aren't equivalent with respect to the family of Lebesgue - measurable functions.
- 2. There exists continuum many different $(\omega_1, \mathbb{K}, \mathbb{L})$ Luzin sets which aren't equivalent with respect to the family of Baire measurable functions.

- Each Lebesgue measurable function is equal to some Borel function on the set of full measure,
- each Baire-measurable function is equal to some Borel function on the comeager set.

Corollary

Assume CH.

- There exists continuum many different (ω₁, L, K) Luzin sets which aren't equivalent with respect to the family of Lebesgue - measurable functions.
- There exists continuum many different (ω₁, K, L) Luzin sets which aren't equivalent with respect to the family of Baire measurable functions.

- Each Lebesgue measurable function is equal to some Borel function on the set of full measure,
- each Baire-measurable function is equal to some Borel function on the comeager set.

Corollary

Assume CH.

- There exists continuum many different (ω₁, L, K) Luzin sets which aren't equivalent with respect to the family of Lebesgue - measurable functions.
- 2. There exists continuum many different $(\omega_1, \mathbb{K}, \mathbb{L})$ Luzin sets which aren't equivalent with respect to the family of Baire measurable functions.

Definiable (idealized) forcing was developed by J. Zapletal (see [5])

Lemma

Let I be σ - ideal which is definible on 2^{ω} with conditions:

• $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper,

I has Fubini prpoperty.

Assume that $B \in Bor(2^{\omega}) \cap I$ be a Borel set in V[G]. Then there exists $D \in V$ s.t.

$$B\cap (2^{\omega})^V\subset D\in I.$$

For Cohen and Solovay reals, see Solovay, Cichoń and Pawlikowski, see [1, 3, 4]

Proof

Let \dot{B} – name for B \dot{r} – canonical name for generic real then there exists $C \in Bor(2^{\omega} \times 2^{\omega}) \cap (I \otimes I)$ - borel set coded in ground model V $B = C_{\dot{r}_G}$ and $C \in I \otimes I$ Now by Fubini property:

$$\{x: C^x \notin I\} \in I.$$

Let
$$x \in B \cap (2^{\omega})^V$$
 then $V[G] \models x \in B$

$$0 < [x \in B] = [x \in C_{\dot{r}}] = [(\dot{r}, x) \in C] = [\dot{r} \in C^{\times}] = [C^{\times}]_{I}$$

Then we have:

$$B \cap (2^{\omega})^{V} \subset \{x : C^{x} \notin I\} \in I.$$

Let $M \subseteq N$ be standard transitive models of ZF. We say that $x \in M \cap \omega^{\omega}$ for a set from σ - ideal I is absolute iff

 $M \vDash \# x \in I \leftrightarrow N \vDash \# x \in I.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $\omega < \kappa$ and I, J be σ - ideals with borel base on 2^{ω} ,

- ▶ $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper definible forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ - is preserving (I, J) - Luzin set porperty.

Let $\omega < \kappa$ and I, J be σ - ideals with borel base on 2^{ω} ,

- $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper definible forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_I=\mathsf{Bor}(2^\omega)\setminus I$ - is preserving (I,J) - Luzin set porperty.

Let $\omega < \kappa$ and I, J be σ - ideals with borel base on 2^{ω} ,

- $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper definible forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_{\mathsf{I}} = \mathsf{Bor}(2^\omega) \setminus \mathsf{I}$ - is preserving (I,J) - Luzin set porperty.

Let $\omega < \kappa$ and I, J be σ - ideals with borel base on 2^{ω} ,

- $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper definible forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_{I} = Bor(2^{\omega}) \setminus I$ - is preserving (I, J) - Luzin set porperty.

Let $\omega < \kappa$ and I, J be σ - ideals with borel base on 2^{ω} ,

- $\mathbb{P}_I = Bor(2^{\omega}) \setminus I$ be a proper definible forcing notion,
- I has Fubini property,
- Borel codes for sets from ideal J are absolute.

Then $\mathbb{P}_{I} = Bor(2^{\omega}) \setminus I$ - is preserving (I, J) - Luzin set porperty.

Proof

Let G is \mathbb{P}_I generic over V $L - (\kappa, I, J)$ - Luzin set in the ground model V. In V[G] take any $B \in I$ then $L \cap B \cap V = L \cap B$ but by Lemma $L \cap B \in I$ in V so we can find $b \in 2^{\omega} \cap V$ - Borel code s.t. $B \cap V \subset \#b \in I \cap V$ But L is (I, J)-Luzin set then $L \cap \#b \in J \cap V$, Let $c \in 2^{\omega} \cap V$ be a Borel code s.t. $L \cap \#b \subset \#c \in J \cap V$ then by absolutness $\#c \in J$ in V[G]finally we have in V[G]

A D N A 目 N A E N A E N A B N A C N

 $L \cap B = L \cap B \cap V \subset L \cap \#b \subseteq \#c \in J \text{ in } V[G].$

Motivation:

Theorem (Cichoń see [1])

The iteration with any lenght of the c.c.c. forcings with finite support can preserve $(\mathbb{K}, [\mathbb{R}]^{\leq \omega})$ - Luzin sets.

Let (\mathbb{P}, \leq) - does not change reals and borel codes for sets from σ -ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Proof

Let observe that borel bases for ideals I, J are the same in ground model and in generic extension.

Fix $A \in I \cap V[G]$ and find $b \in \omega^{\omega} \cap V$ and $B \in Borel \cap I$ with $A \subset \#b = B$.

By absolutness $V \vDash \# b \in I$ then find $c \in \omega^{\omega} \cap V$ with

 $V \models L \cap \#b \subset \#c \in J.$

absolutness again:

 $V[G] \vDash L \cap B = L \cap \#b \subset \#c \in J.$

Corollary

Let (\mathbb{P}, \leq) be σ -closed forcing and Borel codes for ideals I, J are absolute then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Let (\mathbb{P}, \leq) - does not change reals and borel codes for sets from σ -ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Proof

Let observe that borel bases for ideals I, J are the same in ground model and in generic extension.

Fix $A \in I \cap V[G]$ and find $b \in \omega^{\omega} \cap V$ and $B \in Borel \cap I$ with $A \subseteq \#b = B$. By absolutness $V \vDash \#b \in I$ then find $c \in \omega^{\omega} \cap V$ with $V \vDash L \cap \#b \subset \#c \in J$. absolutness again: $V[G] \vDash L \cap B = L \cap \#b \subset \#c \in J$.

Corollary

Let (\mathbb{P}, \leq) be σ -closed forcing and Borel codes for ideals I, J are absolute then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let (\mathbb{P}, \leq) - does not change reals and borel codes for sets from σ -ideals I, J are absolute. Then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

Proof

Let observe that borel bases for ideals I, J are the same in ground model and in generic extension.

Fix $A \in I \cap V[G]$ and find $b \in \omega^{\omega} \cap V$ and $B \in Borel \cap I$ with $A \subseteq \#b = B$. By absolutness $V \vDash \#b \in I$ then find $c \in \omega^{\omega} \cap V$ with $V \vDash L \cap \#b \subset \#c \in J$. absolutness again: $V[G] \vDash L \cap B = L \cap \#b \subset \#c \in J$.

Corollary

Let (\mathbb{P}, \leq) be σ -closed forcing and Borel codes for ideals I, J are absolute then (\mathbb{P}, \leq) preserve (I, J) - Luzin sets.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

▶ for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ - σ closed,

Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

A D N A 目 N A E N A E N A B N A C N

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

A D N A 目 N A E N A E N A B N A C N

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

Let $\lambda \in On$ and $\mathbb{P}_{\lambda} = \langle (P_{\alpha}, \dot{Q}_{\alpha}) : \alpha < \lambda \rangle$ be iterating forcing with countable support, with conditions:

- for any $\alpha < \lambda \mathbb{P}_{\alpha} \Vdash \dot{Q}_{\alpha}$ σ closed,
- Borel codes for sets from ideals I, J are absolute.

Then \mathbb{P}_{λ} - preserve (I, J) - Luzin sets.

Theorem

If κ - supercompact cardinal exists and L is (\mathbb{K}, \mathbb{L}) - Luzin set then there exists forcing notion \mathbb{P} s.t. in any generic extension by \mathbb{P} the conditions are fulfilled:

A D N A 目 N A E N A E N A B N A C N

•
$$2^{\omega} = add(\mathbb{K}) = add(\mathbb{L}) = \omega_2$$
,

• L is (\mathbb{K}, \mathbb{L}) - Luzin set.

- J. Cichoń, *On two-cardinal properties of ideals*, Trans. Am. Math. Soc. **vol 314**, no. 2 (1989), pp 693-708,
- J. Cichoń, J. Pawlikowski, *On ideals of subsets of the plane and on Cohen reals*, J. Symbolic Logic **vol. 51**, no. 1 (1986), pp 560-569
- J. Pawlikowski, Why Solovay real produces Cohen real, J. Symbolic Logic **vol. 51** no. 4 (1986), pp 957-968,
- R. Solovay, A model of set theore in which every set is Lebesgue measurable, Annals of Mathematics 92 ser 2 (1970), pp 1-56

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

J. Zapletal, Forcing idealized, Cambrigde Tracts in Mathematics, Cambrigde University Press no. 174 (2008).