The complexity of automatic partial orders

Alexandra A．Revenko
Novosibirsk State University

Definition

A structure $\mathcal{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is automatic if its domain A and all its relations R_{i} are finite automata recognisable (automata for relations working synchronously on tuples of finite words).

Definition

A structure $\mathcal{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ is automatic if its domain A and all its relations R_{i} are finite automata recognisable (automata for relations working synchronously on tuples of finite words).

Example

(\mathbb{N}, \leq) is automatic.
\triangleleft Let $\Sigma=\{1\}$ then $\left(1^{*}, \leq_{l e x}\right) \cong(\mathbb{N}, \leq) . \triangleright$

Theorem (Blumensath, Gradel, Hodgson, Khoussainov, Nerode, Rubin, Stephan)

There exists an algorithm that given a relation which is first order definable (with parameters) in an automatic structure with an additional quantifier \exists^{∞} constructs an automaton recognising this relation.

Theorem (Blumensath, Gradel, Hodgson, Khoussainov, Nerode, Rubin, Stephan)

There exists an algorithm that given a relation which is first order definable (with parameters) in an automatic structure with an additional quantifier \exists^{∞} constructs an automaton recognising this relation.

Corollary

The first order theory of an automatic structure A is decidable.

Example (Delhomme)
A well order is automatic if and only if it is isomorphic to an ordinal strictly less than ω^{ω}.

Example (Delhomme)

A well order is automatic if and only if it is isomorphic to an ordinal strictly less than ω^{ω}.

Example (Knoussainov, Nies, Rubin, Stephan)

Boolean algebra is automatic if and only if it is isomorphic to a finite Cartesian product of the Boolean algebra \mathcal{B}_{ω} of finite and co-finite subsets of ω.

Definition

Let \bar{a}, \bar{b} be tuples in a structure \mathcal{A}.

1. We write $\bar{a} \equiv_{\mathcal{A}}^{0} \bar{b}$ if \bar{a} and \bar{b} satisfy the same quontifier-free formulas.
2. For $\alpha>0$ we write $\bar{a} \equiv_{\mathcal{A}}^{\alpha} \bar{b}$ if for all $\beta<\alpha$ and \bar{c} there exists \bar{d}, and for all \bar{d} there exists \bar{c} such that $\bar{a}, \bar{c} \equiv_{\mathcal{A}}^{\beta} \bar{b}, \bar{d}$.

Definition

The Scott rank of a tuple \bar{a} in \mathcal{A} is the least ordinal β such that for all \bar{b} relation $\bar{a} \equiv{ }_{\mathcal{A}}^{\beta} \bar{b}$ implies that $(\mathcal{A}, \bar{a}) \cong(\mathcal{A}, \bar{b})$.

Definition

The Scott rank of \mathcal{A} is the least ordinal α greater than the ranks of all tuples in \mathcal{A}.

Theorem (B. Khoussainov and M. Minnes)

For any given ordinal $\alpha \leq \omega_{1}^{C K}+1$ there exists an automatic structure of Scott rank α.

Theorem (B. Khoussainov and M. Minnes)

For any given ordinal $\alpha \leq \omega_{1}^{C K}+1$ there exists an automatic structure of Scott rank α.

Theorem

For any given ordinal $\alpha \leq \omega_{1}^{C K}+1$ there exists an automatic partial order of Scott rank greater or equal than α.

$$
\mathcal{A}^{\prime}=\left(A^{\prime}, R_{1}^{n_{1}}, \ldots, R_{k}^{n_{k}}\right)
$$

$$
\begin{gathered}
\mathcal{A}^{\prime}=\left(A^{\prime}, R_{1}^{n_{1}}, \ldots, R_{k}^{n_{k}}\right) \\
\mathcal{A}=\left(A, P^{n}\right), \text { where } n=\sum_{i=1}^{k} n_{i}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{A}^{\prime}=\left(A^{\prime}, R_{1}^{n_{1}}, \ldots, R_{k}^{n_{k}}\right) \\
\mathcal{A}=\left(A, P^{n}\right), \text { where } n=\sum_{i=1}^{k} n_{i}
\end{gathered}
$$

$$
\begin{gathered}
\mathcal{M}=(M, \leq) \\
\text { where } M=A \cup\left(I \times A^{n}\right) \cup C \text { and } I=\{0,1, \ldots, n\}
\end{gathered}
$$

Thank you!

