The complexity of automatic partial orders

Alexandra A. Revenko Novosibirsk State University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Definition

A structure $\mathcal{A} = (A, R_1, \dots, R_n)$ is automatic if its domain A and all its relations R_i are finite automata recognisable (automata for relations working synchronously on tuples of finite words).

<ロト <四ト <注入 <注下 <注下 <

Definition

A structure $\mathcal{A} = (A, R_1, \dots, R_n)$ is automatic if its domain A and all its relations R_i are finite automata recognisable (automata for relations working synchronously on tuples of finite words).

<ロト <四ト <注入 <注下 <注下 <

Example

 (\mathbb{N},\leq) is automatic.

$$\lhd$$
 Let $\Sigma = \{1\}$ then $(1^*, \leq_{\mathit{lex}}) \cong (\mathbb{N}, \leq)$. \rhd

Theorem (Blumensath, Gradel, Hodgson, Khoussainov, Nerode, Rubin, Stephan)

There exists an algorithm that given a relation which is first order definable (with parameters) in an automatic structure with an additional quantifier \exists^{∞} constructs an automaton recognising this relation.

(日) (문) (문) (문)

Theorem (Blumensath, Gradel, Hodgson, Khoussainov, Nerode, Rubin, Stephan)

There exists an algorithm that given a relation which is first order definable (with parameters) in an automatic structure with an additional quantifier \exists^{∞} constructs an automaton recognising this relation.

Corollary

The first order theory of an automatic structure A is decidable.

Example (Delhomme)

A well order is automatic if and only if it is isomorphic to an ordinal strictly less than ω^{ω} .

<ロト

Example (Delhomme)

A well order is automatic if and only if it is isomorphic to an ordinal strictly less than ω^{ω} .

Example (Knoussainov, Nies, Rubin, Stephan)

Boolean algebra is automatic if and only if it is isomorphic to a finite Cartesian product of the Boolean algebra \mathcal{B}_{ω} of finite and co-finite subsets of ω .

< □ > < 個 > < 注 > < 注 > ... 注

Definition

Let $\overline{a}, \overline{b}$ be tuples in a structure \mathcal{A} . 1. We write $\overline{a} \equiv_{\mathcal{A}}^{0} \overline{b}$ if \overline{a} and \overline{b} satisfy the same quontifier-free formulas.

2. For $\alpha > 0$ we write $\overline{a} \equiv^{\alpha}_{\mathcal{A}} \overline{b}$ if for all $\beta < \alpha$ and \overline{c} there exists \overline{d} , and for all \overline{d} there exists \overline{c} such that $\overline{a}, \overline{c} \equiv^{\beta}_{\mathcal{A}} \overline{b}, \overline{d}$.

Definition

The Scott rank of a tuple \overline{a} in \mathcal{A} is the least ordinal β such that for all \overline{b} relation $\overline{a} \equiv^{\beta}_{\mathcal{A}} \overline{b}$ implies that $(\mathcal{A}, \overline{a}) \cong (\mathcal{A}, \overline{b})$.

Definition

The Scott rank of A is the least ordinal α greater than the ranks of all tuples in A.

Theorem (B. Khoussainov and M. Minnes)

For any given ordinal $\alpha \leq \omega_1^{\rm CK} + 1$ there exists an automatic structure of Scott rank α .

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Theorem (B. Khoussainov and M. Minnes)

For any given ordinal $\alpha \leq \omega_1^{\rm CK} + 1$ there exists an automatic structure of Scott rank α .

Theorem

For any given ordinal $\alpha \leq \omega_1^{CK} + 1$ there exists an automatic partial order of Scott rank greater or equal than α .

$$\mathcal{A}' = (A', R_1^{n_1}, \ldots, R_k^{n_k})$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathcal{A}' = (A', R_1^{n_1}, \ldots, R_k^{n_k})$$

$$\mathcal{A} = (A, P^n), \text{ where } n = \sum_{i=1}^k n_i$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathcal{A}' = (A', R_1^{n_1}, \ldots, R_k^{n_k})$$

$$\mathcal{A}=(A,P^n),$$
 where $n=\sum\limits_{i=1}^k n_i$

$$\mathcal{M} = (M, \leq),$$

where $M = A \cup (I \times A^n) \cup C$ and $I = \{0, 1, \dots, n\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲ロト ▲御ト ▲注ト ▲注ト 注目 めんぐ

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで