On forcing with σ -ideals of closed sets

Marcin Sabok (Wrocław University)

Sofia, 31 July 2009

Marcin Sabok (Wrocław University) On forcing with σ -ideals of closed sets

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Idealized forcing

Many classical forcing notions can be represented in the form $\mathbf{P}_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ -ideal on X.

Idealized forcing

Many classical forcing notions can be represented in the form $\mathbf{P}_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ -ideal on X.

Examples

The examples are: the Cohen forcing (σ -ideal of meager sets), the Sacks forcing (σ -ideal of countable sets), or the Miller forcing (K_{σ} sets in ω^{ω})

- 4 同 6 4 日 6 4 日 6

Idealized forcing

Many classical forcing notions can be represented in the form $\mathbf{P}_I = \text{Bor}(X) \setminus I$, where X is a Polish space and I is a σ -ideal on X.

Examples

The examples are: the Cohen forcing (σ -ideal of meager sets), the Sacks forcing (σ -ideal of countable sets), or the Miller forcing (K_{σ} sets in ω^{ω})

Another way

Note that the forcing $\mathbf{P}_I = \text{Bor}(X) \setminus I$ is equivalent to the quotient Boolean algebra Bor(X)/I (which is the separative quotient of \mathbf{P}_I).

イロン イボン イヨン イヨン

The generic real

A forcing notion of the form $Bor(\omega^{\omega})/I$ adds the generic real, denoted \dot{g} and defined in the following way:

$$\llbracket \dot{g}(n) = m \rrbracket = \llbracket (n,m) \rrbracket_I$$

where [(n, m)] is the basic clopen in ω^{ω}).

□→ < □→ < □→</p>

The generic real

A forcing notion of the form $Bor(\omega^{\omega})/I$ adds the generic real, denoted \dot{g} and defined in the following way:

$$\llbracket \dot{g}(n) = m \rrbracket = [(n,m)]_I$$

where [(n, m)] is the basic clopen in ω^{ω}).

Genericity

Of course, the generic ultrafilter can be recovered from the generic real in the following way:

$$G = \{B \in Bor(X) : g \in B\}$$

where g denotes the generic real.

The σ -ideal

We say that a σ -ideal I is generated by closed sets, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n < \omega} F_n$.

- 4 同 2 4 日 2 4 日 2 4

The σ -ideal

We say that a σ -ideal I is generated by closed sets, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n < \omega} F_n$.

Theorem (Solecki)

Let I be a σ -ideal generated by closed sets. If $A \subseteq X$ is analytic, then either $A \in I$, or else A contains a G_{δ} set G such that $G \notin I$.

□→ < □→ < □→</p>

The σ -ideal

We say that a σ -ideal I is generated by closed sets, if for each $A \in I$ there is a sequence of closed sets $F_n \in I$ such that $A \subseteq \bigcup_{n < \omega} F_n$.

Theorem (Solecki)

Let I be a σ -ideal generated by closed sets. If $A \subseteq X$ is analytic, then either $A \in I$, or else A contains a G_{δ} set G such that $G \notin I$.

Corollary

From the above theorem of Solecki we get that if I is generated by closed sets, then \mathbf{P}_I is forcing equivalent to $\mathbf{Q}_I = \mathbf{\Sigma}_1^1 \setminus I$ (\mathbf{P}_I is dense in \mathbf{Q}_I).

< ロ > < 同 > < 回 > < 回 >

Theorem (Zapletal)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is proper.

< □ > < □ >

Theorem (Zapletal)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is proper.

Axiom A

Recall that a forcing notion **P** satisfies Baumgartner's Axiom A if there is a sequence of partial orders \leq_n on **P** such that $\leq_0 = \leq$, $\leq_{n+1} \subseteq \leq_n$ and

- if $\langle p_n \in \mathbf{P}, n < \omega \rangle$ is such that $p_{n+1} \leq_n p_n$, then there is $q \in \mathbf{P}$ such that $q \leq_n p_n$ for all n,
- for every p∈ P, for every n and for every name α̇ for an ordinal there exist q∈ P and a countable set of ordinals A such that q ≤_n p_n for each n < ω, and q ⊩ α̇ ∈ A.

イロト イポト イラト イラト

Proposition (MS)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is equivalent to a forcing with trees, which satisfies Axiom A.

イロン イボン イヨン イヨン

Proposition (MS)

If I is a σ -ideal generated by closed sets, then the forcing \mathbf{P}_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^{\omega}$ and fix *I*. Let $A \subseteq \omega^{\omega}$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to A.

- 4 同 2 4 回 2 4 回 2 4

Proposition (MS)

If I is a σ -ideal generated by closed sets, then the forcing P_I is equivalent to a forcing with trees, which satisfies Axiom A.

Sketch of the proof

Assume $X = \omega^{\omega}$ and fix *I*. Let $A \subseteq \omega^{\omega}$ be an analytic set and let T be a tree on $\omega \times \omega$ projecting to *A*.

Game $G_I(T)$

Consider the following game (between Adam and Eve).

- in his *n*-th move, Adam picks $\tau_n \in T$ such that τ_{n+1} extends τ_n .
- in her *n*-th move, Eve picks a clopen set O_n in ω^{ω} such that

 $\operatorname{proj}[T_{\tau_n}] \notin \mathcal{I} \; \Rightarrow \; \mathcal{O}_n \cap \operatorname{proj}[T_{\tau_n}] \notin \mathcal{I}.$

Winning condition

By the end of a play, Adam and Eve have a sequence of closed sets E_k in ω^{ω} defined as follows:

$$E_k = 2^\omega \setminus igcup_{i < \omega} O_{
ho^{-1}(i,k)}.$$

(ρ is some fixed bijection between ω and ω^2). Define $x = \pi(\bigcup_{n < \omega} \tau_n) \in \omega^{\omega}$. Adam wins if and only if

$$x \notin \bigcup_{k < \omega} E_k.$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Winning condition

By the end of a play, Adam and Eve have a sequence of closed sets E_k in ω^{ω} defined as follows:

$$E_k = 2^\omega \setminus \bigcup_{i < \omega} O_{
ho^{-1}(i,k)}.$$

(ρ is some fixed bijection between ω and ω^2). Define $x = \pi(\bigcup_{n < \omega} \tau_n) \in \omega^{\omega}$. Adam wins if and only if

$$x \notin \bigcup_{k < \omega} E_k.$$

Lemma

Eve has a winning strategy in $G_I(T)$ if and only if $A = \text{proj}[T] \in I$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\operatorname{proj}[S]$ we denote the set of points $x \in \omega^{\omega}$ which arise at the end of some game obeying S.

・ロト ・同ト ・ヨト ・ヨト

Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\operatorname{proj}[S]$ we denote the set of points $x \in \omega^{\omega}$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then $\operatorname{proj}[S]$ is an analytic subset of A and $\operatorname{proj}[S] \notin I$.

- 4 同 2 4 日 2 4 日 2 4

Strategy

If S is a strategy for Adam in $G_I(T)$, then by $\operatorname{proj}[S]$ we denote the set of points $x \in \omega^{\omega}$ which arise at the end of some game obeying S.

Lemma

If S is a winning strategy in $G_I(T)$, then $\operatorname{proj}[S]$ is an analytic subset of A and $\operatorname{proj}[S] \notin I$.

Forcing with strategies

Consider the following forcing T_I :

 $\{S : S \text{ is a winning strategy for Adam in } G_I(T) \text{ for some tree } T\}$ ordered as follows:

 $S_0 \leq S_1 \text{ iff } \operatorname{proj}[S_0] \subseteq \operatorname{proj}[S_1].$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Dense embedding

Notice that $\mathbf{T}_I \ni S \mapsto \operatorname{proj}[S] \in \mathbf{Q}_I$ is a dense embedding, hence the three forcing notions \mathbf{P}_I , \mathbf{Q}_I and \mathbf{T}_I are forcing equivalent. Let us show that \mathbf{T}_I satisfies Axiom A.

Dense embedding

Notice that $\mathbf{T}_I \ni S \mapsto \operatorname{proj}[S] \in \mathbf{Q}_I$ is a dense embedding, hence the three forcing notions \mathbf{P}_I , \mathbf{Q}_I and \mathbf{T}_I are forcing equivalent. Let us show that \mathbf{T}_I satisfies Axiom A.

Winning condition revised

Recall that the winning condition for Adam in $G_I(T)$ says that

$$x \not\in \bigcup_k E_k.$$

Fix k. For each play in $G_l(T)$ both x and E_k are built "step-by-step" (E_k from basic clopen sets which sum up to $\omega^{\omega} \setminus E_k$). Hence, if π is a play and $x \notin E_k$, then there is $m < \omega$ such that the partial play $\pi \upharpoonright m$ already determines that " $x \notin E_k$ ".

< ロ > < 同 > < 回 > < 回 >

Fusion

Let $S \in \mathbf{T}_i$ be a winning strategy for Adam. For each play π in S there is the least $m < \omega$ such that $\pi \upharpoonright m$ determines that " $x \notin E_i$ " for $i \leq k$. Therefore, we can define the *k*-th front of the tree S, denoted by $F_k(S)$ so that each play determines " $x \notin E_i$ " before passing through $F_k(S)$.

Fusion

Let $S \in \mathbf{T}_i$ be a winning strategy for Adam. For each play π in S there is the least $m < \omega$ such that $\pi \upharpoonright m$ determines that " $x \notin E_i$ " for $i \leq k$. Therefore, we can define the *k*-th front of the tree S, denoted by $F_k(S)$ so that each play determines " $x \notin E_i$ " before passing through $F_k(S)$.

Axiom A

We define the inequalities \leq_k as follows: $S_1 \leq_k S_0$ if and only if

- $S_1 \leq S_0$,
- $F_k(S_1) = F_k(S_0)$.

伺 ト イ ヨ ト イ ヨ ト

The end

Thank You.

・ロト ・回ト ・ヨト ・ヨト

æ