Universal Fragments of some Region-based Theories of Space

Tinko Tinchev

Faculty of Mathematics and Informatics Sofia University

Logic Colloquium 2009 August 1, Sofia

Tinko Tinchev Universal Fragments of some Region-based Theories of Space

Let $T = \langle T, \tau \rangle$ be a topological space, *CI* and *Int* be its closure and interior operators.

A subset X of T is called *regular closed* iff X = Cl(Int(X)); X is called *regular open* iff X = Int(Cl(X)).

Let $0 = \emptyset$, 1 = T and $X_1 \le X_2$ iff $X_1 \subseteq X_2$. Then the regular closed (open) sets forms a Boolean algebra under \le with top element 1 and bottom element 0: RC(T) (resp. RO(T)).

Remark that in $RC(\mathcal{T})$ the meet \sqcup coincide with set-theoretical union \cup , but the join $X_1 \sqcap X_2$ and complement X^* are $Cl(Int(X_1 \cap X_2))$ and $Cl(\mathcal{T} \setminus X)$, respectively.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

The regions: the elements of the Boolean algebra $RC(\mathcal{T})$. Special case: $\mathcal{T} = \mathbb{R}^m$, i.e. the regions form the Boolean algebra $RC(\mathbb{R}^m)$, $m \ge 1$.

The Boolean algebra of the *polytops* in \mathbb{R}^m , $PRC(\mathbb{R}^m)$: the subalgebra of $RC(\mathbb{R}^m)$ generated by the set of *basic polytops*, where basic polytop is finite join of closed half-spaces of \mathbb{R}^m . In other words, the polytop is finite join of finite union of basic polytops.

イロト イ押ト イヨト イヨト 二三

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where *B* is a Boolean algebra of regions

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, *$ with the set of *k*-ary predicate symbols C^k for all k > 1.

Let \mathcal{K} be a class of Boolean algebras of regions and

 $Th_{\forall}(\mathcal{K}) = \{ \phi \mid \mathfrak{A}_{B} \models \phi, B \in \mathcal{K}, \phi \text{ is sentence} \}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where B is a Boolean algebra of regions

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, *$ with the set of *k*-ary predicate symbols C^k for all k > 1.

Let \mathcal{K} be a class of Boolean algebras of regions and

 $Th_{\forall}(\mathcal{K}) = \{ \phi \mid \mathfrak{A}_{B} \models \phi, B \in \mathcal{K}, \phi \text{ is sentence} \}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where B is a Boolean algebra of regions

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, *$ with the set of *k*-ary predicate symbols C^k for all k > 1.

Let \mathcal{K} be a class of Boolean algebras of regions and

 $Th_{\forall}(\mathcal{K}) = \{ \phi \mid \mathfrak{A}_{B} \models \phi, B \in \mathcal{K}, \phi \text{ is sentence} \}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

 $\mathfrak{A}_B = (B, C^2, C^3, \dots)$, where B is a Boolean algebra of regions

The first order language \mathcal{L} is the extension of the language of the Boolean algebras, $0, 1, \sqcup, \sqcap, *$ with the set of *k*-ary predicate symbols C^k for all k > 1.

Let ${\mathcal K}$ be a class of Boolean algebras of regions and

$$Th_{\forall}(\mathcal{K}) = \{ \phi \mid \mathfrak{A}_{\mathcal{B}} \models \phi, \mathcal{B} \in \mathcal{K}, \phi \text{ is sentence} \}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Our aim is to axiomatize:

1. $Th_{\forall}(\mathcal{K}_{all})$, where \mathcal{K}_{all} is the class of all $RC(\mathcal{T})$

2. $Th_{\forall}(\mathcal{K}_{connected})$, where $\mathcal{K}_{connected}$ is the class of all $RC(\mathcal{T})$ for connected topological spaces \mathcal{T}

3.
$$Th_{\forall}(RC(\mathbb{R}^m)), m = 1, m > 1$$

4. $Th_{\forall}(PRC(\mathbb{R}^{m})), m = 1, m > 1$

and to give a new proof of:

 $\begin{array}{l} 5. \ \ Ih_{\forall}(\mathcal{K}_{connected}) = \ Ih_{\forall}(\mathcal{RC}(\mathbb{R}^{2})) = \ Ih_{\forall}(\mathcal{PRC}(\mathbb{R}^{2})) \\ Th_{\forall}(\mathcal{RC}(\mathbb{R}^{m})) = \ Th_{\forall}(\mathcal{PRC}(\mathbb{R}^{m})), \ m \geq 2 \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

Our aim is to axiomatize:

1. $Th_{\forall}(\mathcal{K}_{all})$, where \mathcal{K}_{all} is the class of all $RC(\mathcal{T})$

2. $Th_{\forall}(\mathcal{K}_{connected})$, where $\mathcal{K}_{connected}$ is the class of all $RC(\mathcal{T})$ for connected topological spaces \mathcal{T}

3.
$$Th_{\forall}(RC(\mathbb{R}^m)), m = 1, m > 1$$

4.
$$Th_{\forall}(PRC(\mathbb{R}^m)), m = 1, m > 1$$

and to give a new proof of:

5.
$$Th_{\forall}(\mathcal{K}_{connected}) = Th_{\forall}(RC(\mathbb{R}^2)) = Th_{\forall}(PRC(\mathbb{R}^2)) = Th_{\forall}(RC(\mathbb{R}^m)) = Th_{\forall}(PRC(\mathbb{R}^m)), m \ge 2$$

T_{all}

Let T_{all} be

the set an universal axiomatization of the Boolean algebras

 $\bullet\,$ the axioms for the equality in ${\cal L}\,+\,$

• universal closure of the following formulas

$$C^{k}(x_{1},...,x_{k}) \rightarrow \bigwedge_{i=1}^{k} (x_{i} \neq 0)$$

 $C^{k}(x_{1},...,x' \sqcup x'',...,x_{k}) \leftrightarrow$
 $\bigwedge C^{k}(x_{1},...,x',...,x_{k}) \vee C^{k}(x_{1},...,x'',...,x_{k}), 1 \leq i \leq k$
 $(x \neq 0) \rightarrow C^{k}(x,...,x)$ (sufficient $k = 2$)
 $C^{k}(x_{1},...,x_{k}) \rightarrow C^{k}(x_{\sigma(1)},...,x_{\sigma(k)})$, where σ is a permutation
of $1,...,k$
 $C^{k}(x_{1},...,x_{k}) \rightarrow C^{k+1}(x_{1},...,x_{k},x_{k})$
 $C^{k+1}(x_{1},...,x_{k+1}) \rightarrow C^{k}(x_{1},...,x_{k})$

ヘロン ヘアン ヘビン ヘビン

T_{all}

Let T_{all} be

- the set an universal axiomatization of the Boolean algebras
- $\bullet\,$ the axioms for the equality in ${\cal L}\,+\,$

• universal closure of the following formulas

$$C^{k}(x_{1},...,x_{k}) \rightarrow \bigwedge_{i=1}^{k} (x_{i} \neq 0)$$

$$C^{k}(x_{1},...,x' \sqcup x'',...,x_{k}) \leftrightarrow$$

$$\bigwedge C^{k}(x_{1},...,x',...,x_{k}) \vee C^{k}(x_{1},...,x'',...,x_{k}), 1 \leq i \leq k$$

$$(x \neq 0) \rightarrow C^{k}(x,...,x) \text{ (sufficient } k = 2)$$

$$C^{k}(x_{1},...,x_{k}) \rightarrow C^{k}(x_{\sigma(1)},...,x_{\sigma(k)}), \text{ where } \sigma \text{ is a permutation } of 1,...,k$$

$$C^{k}(x_{1},...,x_{k}) \rightarrow C^{k+1}(x_{1},...,x_{k},x_{k})$$

$$C^{k+1}(x_{1},...,x_{k+1}) \rightarrow C^{k}(x_{1},...,x_{k})$$

ヘロト 人間 ト くほ ト くほ トー

T_{all}

Let T_{all} be

- the set an universal axiomatization of the Boolean algebras
- $\bullet\,$ the axioms for the equality in ${\cal L}\,+\,$

• universal closure of the following formulas

$$C^{k}(x_{1},...,x_{k}) \rightarrow \bigwedge_{i=1}^{k} (x_{i} \neq 0)$$

$$C^{k}(x_{1},...,x' \sqcup x'',...,x_{k}) \leftrightarrow$$

$$\bigwedge C^{k}(x_{1},...,x',...,x_{k}) \vee C^{k}(x_{1},...,x'',...,x_{k}), 1 \leq i \leq k$$

$$(x \neq 0) \rightarrow C^{k}(x,...,x) \text{ (sufficient } k = 2)$$

$$C^{k}(x_{1},...,x_{k}) \rightarrow C^{k}(x_{\sigma(1)},...,x_{\sigma(k)}), \text{ where } \sigma \text{ is a permutation } of 1,...,k$$

$$C^{k}(x_{1},...,x_{k}) \rightarrow C^{k+1}(x_{1},...,x_{k},x_{k})$$

$$C^{k+1}(x_{1},...,x_{k+1}) \rightarrow C^{k}(x_{1},...,x_{k})$$

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

 $T_{all} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{all})$

Let $T_{connected}$ be $T_{all} + \forall x((x \neq 0) \land (x \neq 1) \rightarrow C^2(x, x^*))$

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

 $\mathcal{T}_{connected} \vdash \phi \iff \phi \in \mathcal{Th}_{\forall}(\mathcal{K}_{connected})$

Tinko Tinchev Universal Fragments of some Region-based Theories of Space

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

$$T_{all} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{all})$$

Let
$$T_{connected}$$
 be $T_{all} + \forall x((x \neq 0) \land (x \neq 1) \rightarrow C^2(x, x^*))$

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

$$T_{connected} \vdash \phi \iff \phi \in Th_{\forall}(\mathcal{K}_{connected})$$

Tinko Tinchev Universal Fragments of some Region-based Theories of Space

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

1) To consider open formulae as modal formulae; Kripke frame $(W, R^2, R^3, ...)$ with natural conditions for relations R^k

 To define the analog of Boolean Contact Algebras — eBCA
 Finite eBCA's are isomorphic with the Boolean algebras of subsets and the relations

 $C^k_{R^k}(X_1,\ldots,X_k)$ iff $(\exists x_1 \in X_1),\ldots$ $(\exists x_k \in X_k)$ s.t. $R^k(x_1,\ldots,x_k)$

_emma

The minimal modal logic L_{min} is complete with respect to the class of all finite frames.

_emma

The logic $L_{min} + (a \neq 0) \land (a^* \neq 0) \rightarrow C^2(a, a^*)$ is complete with respect to the class of all finite connected with respect to R^2 Kripke frames.

1) To consider open formulae as modal formulae; Kripke frame $(W, R^2, R^3, ...)$ with natural conditions for relations R^k 2) To define the analog of Boolean Contact Algebras — eBCA 3) Finite eBCA's are isomorphic with the Boolean algebras of subsets and the relations $C_{Pk}^k(X_1, ..., X_k)$ iff $(\exists x_1 \in X_1), ..., (\exists x_k \in X_k)$ s.t. $R^k(x_1, ..., x_k)$

_emma

The minimal modal logic L_{min} is complete with respect to the class of all finite frames.

_emma

The logic $L_{min} + (a \neq 0) \land (a^* \neq 0) \rightarrow C^2(a, a^*)$ is complete with respect to the class of all finite connected with respect to R^2 Kripke frames.

1) To consider open formulae as modal formulae; Kripke frame $(W, R^2, R^3, ...)$ with natural conditions for relations R^k 2) To define the analog of Boolean Contact Algebras — eBCA 3) Finite eBCA's are isomorphic with the Boolean algebras of subsets and the relations

 $C^k_{R^k}(X_1,\ldots,X_k)$ iff $(\exists x_1 \in X_1),\ldots$ $(\exists x_k \in X_k)$ s.t. $R^k(x_1,\ldots,x_k)$

_emma

The minimal modal logic L_{min} is complete with respect to the class of all finite frames.

_emma

The logic $L_{min} + (a \neq 0) \land (a^* \neq 0) \rightarrow C^2(a, a^*)$ is complete with respect to the class of all finite connected with respect to R^2 Kripke frames.

イロト 不得 トイヨト イヨト

1) To consider open formulae as modal formulae; Kripke frame $(W, R^2, R^3, ...)$ with natural conditions for relations R^k 2) To define the analog of Boolean Contact Algebras — eBCA 3) Finite eBCA's are isomorphic with the Boolean algebras of subsets and the relations

 $C^k_{R^k}(X_1,\ldots,X_k)$ iff $(\exists x_1 \in X_1),\ldots$ $(\exists x_k \in X_k)$ s.t. $R^k(x_1,\ldots,x_k)$

Lemma

The minimal modal logic L_{min} is complete with respect to the class of all finite frames.

_emma

The logic $L_{min} + (a \neq 0) \land (a^* \neq 0) \rightarrow C^2(a, a^*)$ is complete with respect to the class of all finite connected with respect to R^2 Kripke frames.

イロト 不得 トイヨト イヨト

1) To consider open formulae as modal formulae; Kripke frame $(W, R^2, R^3, ...)$ with natural conditions for relations R^k 2) To define the analog of Boolean Contact Algebras — eBCA 3) Finite eBCA's are isomorphic with the Boolean algebras of subsets and the relations

 $C^k_{R^k}(X_1,\ldots,X_k)$ iff $(\exists x_1 \in X_1),\ldots$ $(\exists x_k \in X_k)$ s.t. $R^k(x_1,\ldots,x_k)$

Lemma

The minimal modal logic L_{min} is complete with respect to the class of all finite frames.

Lemma

The logic $L_{min} + (a \neq 0) \land (a^* \neq 0) \rightarrow C^2(a, a^*)$ is complete with respect to the class of all finite connected with respect to R^2 Kripke frames.

Lemma

For any finite eBCA **B** there is a regular closed set $X \subseteq \mathbb{R}^3$ such that **B** is isomorphic with the subalgebra of RC(X) where **X** is the set X with induces topology.

We "realize" the frame corresponding to **B** with regions in \mathbb{R}^3 .

The Kripke frame corresponding to **B** is connected with respect to R^2 iff **X** is connected (iff *X* is connected in \mathbb{R}^3).

Lemma

For any finite eBCA **B** there is a regular closed set $X \subseteq \mathbb{R}^3$ such that **B** is isomorphic with the subalgebra of RC(X) where **X** is the set X with induces topology.

We "realize" the frame corresponding to **B** with regions in \mathbb{R}^3 .

The Kripke frame corresponding to **B** is connected with respect to R^2 iff **X** is connected (iff *X* is connected in \mathbb{R}^3).

Lemma

For any finite eBCA **B** there is a regular closed set $X \subseteq \mathbb{R}^3$ such that **B** is isomorphic with the subalgebra of RC(X) where **X** is the set X with induces topology.

We "realize" the frame corresponding to **B** with regions in \mathbb{R}^3 .

The Kripke frame corresponding to **B** is connected with respect to R^2 iff **X** is connected (iff *X* is connected in \mathbb{R}^3).

Let
$$T_1$$
 be $T_{connected}$ + an universal closure of
 $C^3(x_1, x_2, x_3) \rightarrow \bigvee_{1 \le i < j \le j} (x_i \sqcap x_j \ne 0)$ and
 $C^{k+1}(x_1, \dots, x_{k+1}) \rightarrow \bigvee_{1 \le i < j \le k+1} C^k(x_i \sqcap x_j, \dots)$

Theorem

Let ϕ be an universal sentence from \mathcal{L} . Then

$$T_1 \vdash \phi \iff \phi \in Th_{\forall}(PRC(\mathbb{R}))$$

Tinko Tinchev Universal Fragments of some Region-based Theories of Space

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

1) The corresponding modal logic is complete with respect to the class of all finite connected frames satisfying a trivial condition for R^k , $k \ge 3$.

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2

3) Realize this finite tree as partition of \mathbb{R} using closed intervals

1) The corresponding modal logic is complete with respect to the class of all finite connected frames satisfying a trivial condition for R^k , $k \ge 3$.

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2

Realize this finite tree as partition of
 R using closed intervals

(4回) (日) (日)

1) The corresponding modal logic is complete with respect to the class of all finite connected frames satisfying a trivial condition for R^k , $k \ge 3$.

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2

3) Realize this finite tree as partition of ${\ensuremath{\mathbb R}}$ using closed intervals

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem

$Th_{\forall}(\mathcal{K}_{connected}) = Th_{\forall}(RC(\mathbb{R}^2)) = Th_{\forall}(PRC(\mathbb{R}^2)) = Th_{\forall}(RC(\mathbb{R}^m)) = Th_{\forall}(PRC(\mathbb{R}^m)) = Th_{\forall}(RC(\mathbb{R})), m \ge 2$

Tinko Tinchev Universal Fragments of some Region-based Theories of Space

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ● ◇◇◇

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2 and special kind conditions for R^k , k > 2

3) Realize this finite tree as finite partition of \mathbb{R}^2 using closed bands.

4) Realize this finite tree as, generally infinite, partition of \mathbb{R} .

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2 and special kind conditions for R^k , k > 2

3) Realize this finite tree as finite partition of \mathbb{R}^2 using closed bands.

4) Realize this finite tree as, generally infinite, partition of \mathbb{R} .

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2 and special kind conditions for R^k , k > 2

3) Realize this finite tree as finite partition of \mathbb{R}^2 using closed bands.

4) Realize this finite tree as, generally infinite, partition of \mathbb{R} .

ヘロト ヘ戸ト ヘヨト ヘヨト

2) Use "appropriate" p-morphic preimage: finite tree with respect to R^2 and special kind conditions for R^k , k > 2

3) Realize this finite tree as finite partition of \mathbb{R}^2 using closed bands.

4) Realize this finite tree as, generally infinite, partition of \mathbb{R} .

ヘロト ヘ戸ト ヘヨト ヘヨト

Thank you very much!

イロン イロン イヨン イヨン

-2