Trifon Trifonov (joint work with Diana Ratiu)

Ludwig Maximilian Universität, München

Logic Colloquium 2009 Sofia, 31.07.2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Constructive and classical logic

Negative Arithmetic (NA $^{\omega}$)

We consider the negative fragment of Heyting Arithmetic.

$$A, B ::= P(\vec{t}) \mid \operatorname{at}(b^{\mathbb{B}}) \mid A \to B \mid A \land B \mid \forall_{x}A \mid \exists_{x}A$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We obtain HA^{ω} by adding the strong existential \exists .

Constructive and classical logic

Negative Arithmetic (NA $^{\omega}$)

We consider the negative fragment of Heyting Arithmetic.

$$\begin{array}{lll} A,B & ::= & P(\vec{t}) \mid \operatorname{at}(b^{\mathbb{B}}) \mid A \to B \mid A \land B \mid \forall_{x}A \mid \exists_{x}A \\ \neg A & ::= & A \to \bot \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We obtain HA^{ω} by adding the strong existential \exists .

Constructive and classical logic

Negative Arithmetic (NA $^{\omega}$)

We consider the negative fragment of Heyting Arithmetic.

$$\begin{array}{lll} A,B & ::= & P(\vec{t}) \mid \operatorname{at}(b^{\mathbb{B}}) \mid A \to B \mid A \land B \mid \forall_{x}A \mid \exists_{x}A \\ \neg A & ::= & A \to \bot \\ \tilde{\exists}_{x}A & ::= & \neg \forall_{x} \neg A \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We obtain HA^{ω} by adding the strong existential \exists .

Constructive and classical logic

Heyting Arithmetic (HA^{ω})

We consider the negative fragment of Heyting Arithmetic.

$$\begin{array}{lll} A,B & ::= & P(\vec{t}) \mid \operatorname{at}(b^{\mathbb{B}}) \mid A \to B \mid A \land B \mid \forall_{x}A \mid \exists_{x}A \\ \neg A & ::= & A \to \bot \\ \tilde{\exists}_{x}A & ::= & \neg \forall_{x} \neg A \end{array}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We obtain HA^{ω} by adding the strong existential \exists .

- Constructive and classical logic

Weak and strong existence

▶ To prove: show *t* and prove *A*(*t*)

► Ĩ_xA

▶ To prove: assume $u : \forall_x (A \to \bot)$ and show \bot

- Constructive and classical logic

Weak and strong existence

• To prove: show t and prove A(t)

► $\tilde{\exists}_{X}A$

 $\blacktriangleright \exists_x A$

• To prove: assume $u: \forall_x (A \to \bot)$ and show \bot

Constructive and classical logic

Weak and strong existence

∃_xA
To prove: show t and prove A(t)
∃_xA

• To prove: assume $u: \forall_x (A \to \bot)$ and show \bot

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Constructive and classical logic

Weak and strong existence

► ∃_xA

- To prove: show t and prove A(t)
- ► ∃_xA
 - To prove: assume $u : \forall_x (A \rightarrow \bot)$ and show \bot

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Constructive and classical logic

Weak and strong existence

- $\blacktriangleright \exists_x A$
 - ► To prove: show *t* and prove *A*(*t*)
- ► Ĩ_xA
 - To prove: assume $u: \forall_x (A \rightarrow \bot)$ and show \bot

Weak existence proofs contain implicit computational content. Simple idea: look which term t is used with the assumption u.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Constructive and classical logic

Weak and strong existence

- ► ∃_xA
 - To prove: show t and prove A(t)
- ► ∃_xA
 - To prove: assume $u: \forall_x (A \rightarrow \bot)$ and show \bot

Weak existence proofs contain implicit computational content. Simple idea: look which term t is used with the assumption u. But: u can be used many times with different terms!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Constructive and classical logic

Weak and strong existence

- ► ∃_xA
 - To prove: show t and prove A(t)
- ► ∃_{*x*}*A*
 - To prove: assume $u: \forall_x (A \rightarrow \bot)$ and show \bot

Weak existence proofs contain implicit computational content. Simple idea: look which term t is used with the assumption u. But: u can be used many times with different terms! Idea: Try to keep track of *all* terms used for u.

(日) (日) (日) (日) (日) (日) (日)

-Constructive and classical logic

Boolean falsity

Using a general predicate variable \perp we work in a minimal logic setting. We denote the system as HA_0^{ω} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

However, if we use *decidable falsity* F := at(ff), we are able to prove by induction on the definition of formulas

Lemma (ex falso quodlibet) $HA^{\omega} \vdash F \rightarrow A$

Lemma (stability)

 $\mathrm{NA}^{\omega} \vdash ((A \rightarrow \mathrm{F}) \rightarrow \mathrm{F}) \rightarrow A$

-Constructive and classical logic

Boolean falsity

Using a general predicate variable \perp we work in a minimal logic setting. We denote the system as HA_0^{ω} . However, if we use *decidable falsity* F := at(ff), we are able to prove by induction on the definition of formulas

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma (ex falso quodlibet) $HA^{\omega} \vdash F \rightarrow A$

Lemma (stability)

 $\mathrm{NA}^{\omega} \vdash ((A \rightarrow \mathrm{F}) \rightarrow \mathrm{F}) \rightarrow A$

-Constructive and classical logic

Boolean falsity

Using a general predicate variable \perp we work in a minimal logic setting. We denote the system as HA_0^{ω} . However, if we use *decidable falsity* F := at(ff), we are able to prove by induction on the definition of formulas

(日) (日) (日) (日) (日) (日) (日)

Lemma (ex falso quodlibet) $HA^{\omega} \vdash F \rightarrow A$

Lemma (stability)

 $\mathrm{NA}^{\omega} \vdash ((A \rightarrow \mathrm{F}) \rightarrow \mathrm{F}) \rightarrow A$

-Constructive and classical logic

Boolean falsity

Using a general predicate variable \perp we work in a minimal logic setting. We denote the system as HA_0^{ω} . However, if we use *decidable falsity* F := at(ff), we are able to prove by induction on the definition of formulas

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma (ex falso quodlibet) $HA^{\omega} \vdash F \rightarrow A$

Lemma (stability) NA^{ω} \vdash (($A \rightarrow F$) \rightarrow F) \rightarrow A

-Constructive and classical logic

Boolean falsity

Using a general predicate variable \perp we work in a minimal logic setting. We denote the system as HA_0^{ω} . However, if we use *decidable falsity* F := at(ff), we are able to prove by induction on the definition of formulas

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Lemma (ex falso quodlibet) $HA^{\omega} \vdash F \rightarrow A$

Lemma (stability)

$$\mathrm{NA}^{\omega} \vdash ((\mathcal{A} \rightarrow \mathrm{F}) \rightarrow \mathrm{F}) \rightarrow \mathcal{A}$$

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}.

Theorem (Extraction via A-translation) Let M be a proof of

$$\operatorname{HA}_0^\omega \vdash D \to \widetilde{\exists}_{y^\rho} G$$

with D, G not containing \bot . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{y} G$$

(日) (日) (日) (日) (日) (日) (日)

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}. Theorem (Extraction via *A*-translation) Let *M* be a proof of

$$\operatorname{HA}_{0}^{\omega} \vdash D \to \widetilde{\exists}_{y^{\rho}}G$$

with D, G not containing \bot . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{y} G$$

(日) (日) (日) (日) (日) (日) (日)

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}. Theorem (Extraction via *A*-translation) Let *M* be a proof of

$$\operatorname{HA}_0^\omega \vdash D \to \forall_{y^\rho} (G \to \bot) \to \bot$$

with D, G not containing \bot . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{y} G$$

(日) (日) (日) (日) (日) (日) (日)

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}. Theorem (Extraction via *A*-translation) Let *M* be a proof of

$$\operatorname{HA}_0^\omega \vdash D \to orall_{y^
ho}(G \to \bot) \to \bot$$

with D, G not containing \perp . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{v} G$$

(日) (日) (日) (日) (日) (日) (日)

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}. Theorem (Extraction via *A*-translation) Let *M* be a proof of

$$\operatorname{HA}_0^\omega \vdash D \to orall_{y^
ho}(G \to \bot) \to \bot$$

with D, G not containing \bot . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{y}G$$

(日) (日) (日) (日) (日) (日) (日)

A-translation

Idea: use \perp to extract computational content of proofs in NA^{ω}. Theorem (Extraction via *A*-translation) Let *M* be a proof of

$$\operatorname{HA}_0^\omega \vdash D \to orall_{y^
ho}(G \to \bot) \to \bot$$

with D, G not containing \bot . Then

$$\mathrm{HA}^{\omega} \vdash D \rightarrow \exists_{y}G$$

(日) (日) (日) (日) (日) (日) (日)

Idea. Let $M' := M [\bot := \exists_y G]$. A witness for y is $[M'](\lambda_y y)$.

Definite and goal formulas

What if \perp appears in D or G?

Bucholz, Berger, Schwichtenberg (2000), Seisenberger (2008):

$$D ::= P \mid G \to D \quad (\text{if } \tau(D) = \varepsilon \text{ then } \tau(G) = \varepsilon) \\ \mid D_1 \land D_2 \quad (\text{if } \tau(D_1) \neq \varepsilon \text{ then } \tau(D_2) = \varepsilon) \\ \mid \forall_x D \end{aligned}$$

 $\begin{array}{rcl} G & ::= & P \mid D \to G & (\text{if } \tau(G) \neq \varepsilon \text{ and } \tau(D) = \varepsilon \text{ then } D \text{ decidable}) \\ & \mid G_1 \land G_2 \\ & \mid \forall_x G & (\text{if } \tau(G) = \varepsilon) \end{array}$

Definite and goal formulas

What if \perp appears in *D* or *G*? Bucholz, Berger, Schwichtenberg (2000), Seisenberger (2008):

$$D ::= P \mid G \to D \quad (\text{if } \tau(D) = \varepsilon \text{ then } \tau(G) = \varepsilon) \\ \mid D_1 \land D_2 \quad (\text{if } \tau(D_1) \neq \varepsilon \text{ then } \tau(D_2) = \varepsilon) \\ \mid \forall_x D \end{aligned}$$

 $\begin{array}{rcl} G & ::= & P \mid D \to G & (\text{if } \tau(G) \neq \varepsilon \text{ and } \tau(D) = \varepsilon \text{ then } D \text{ decidable}) \\ & \mid G_1 \land G_2 \\ & \mid \forall_x G & (\text{if } \tau(G) = \varepsilon) \end{array}$

(日) (日) (日) (日) (日) (日) (日)

Dialectica interpretation

Dialectica interpretation

Let us have a proof of *B* from the assumption *A*.

In case A is true, we have a function producing a witness for B from a witness for A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In case B is false, we have a counterexample for A depending on a counterexample for B

Dialectica interpretation

Dialectica interpretation

Let us have a proof of *B* from the assumption *A*.

In case A is true, we have a function producing a witness for B from a witness for A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In case B is false, we have a counterexample for A depending on a counterexample for B

Dialectica interpretation

Dialectica interpretation

Let us have a proof of *B* from the assumption *A*.

In case A is true, we have a function producing a witness for B from a witness for A

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

In case B is false, we have a counterexample for A depending on a counterexample for B

Dialectica interpretation

Contractions in Dialectica

When A was used more than once, we have a counterexample for each separate use

- Still we need to choose only one of them
- ► We need to be able to *decide* which instance of the assumption *A* was false
- Other approaches finite set of solutions (Diller-Nahm, 1974), monotone Dialectica (Kohlenbach, 1993)

Dialectica interpretation

Contractions in Dialectica

- When A was used more than once, we have a counterexample for each separate use
- Still we need to choose only one of them
- ▶ We need to be able to *decide* which instance of the assumption A was false
- Other approaches finite set of solutions (Diller-Nahm, 1974), monotone Dialectica (Kohlenbach, 1993)

- Dialectica interpretation

Contractions in Dialectica

- When A was used more than once, we have a counterexample for each separate use
- Still we need to choose only one of them
- We need to be able to *decide* which instance of the assumption A was false
- Other approaches finite set of solutions (Diller-Nahm, 1974), monotone Dialectica (Kohlenbach, 1993)

- Dialectica interpretation

Contractions in Dialectica

- When A was used more than once, we have a counterexample for each separate use
- Still we need to choose only one of them
- We need to be able to *decide* which instance of the assumption A was false
- Other approaches finite set of solutions (Diller-Nahm, 1974), monotone Dialectica (Kohlenbach, 1993)

A case study: Infinite Pigeon Hole Principle

The Infinite Pigeon Hole Principle

Theorem (Infinite Pigeon Hole (IPH) Principle)

Any infinite sequence coloured with finitely many colours has an infinite monochromatic subsequence.

Formalisation:

$$\forall_r \forall_f (\forall_n (f_n < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

A case study: Infinite Pigeon Hole Principle

Proof of IPH

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Proof.

Induction on *r*.

- When r = 0 we have a false premise.
- Assume the claim for r, and take f with r + 1 colours.

► A case distinction on "the colour *r* appears infinitely often":

- If yes, then we have found a monochromatic subsequence
- If not, we take the subsequence after the last appearance of the colour r and apply the induction hypothesis

A case study: Infinite Pigeon Hole Principle

Proof of IPH

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Proof.

Induction on r.

- When r = 0 we have a false premise.
- Assume the claim for r, and take f with r + 1 colours.
- A case distinction on "the colour *r* appears infinitely often":
 If yes, then we have found a monochromatic subsequence
 If not, we take the subsequence after the last appearance of the colour *r* and apply the induction hypothesis

A case study: Infinite Pigeon Hole Principle

Proof of IPH

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Proof.

Induction on *r*.

- When r = 0 we have a false premise.
- Assume the claim for r, and take f with r + 1 colours.
- ► A case distinction on "the colour *r* appears infinitely often":
 - If yes, then we have found a monochromatic subsequence
 - If not, we take the subsequence after the last appearance of the colour r and apply the induction hypothesis
A case study: Infinite Pigeon Hole Principle

Proof of IPH

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Proof.

Induction on *r*.

- When r = 0 we have a false premise.
- Assume the claim for r, and take f with r + 1 colours.
- ► A case distinction on "the colour *r* appears infinitely often":
 - If yes, then we have found a monochromatic subsequence
 - If not, we take the subsequence after the last appearance of the colour r and apply the induction hypothesis

A case study: Infinite Pigeon Hole Principle

Proof of IPH

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Proof.

Induction on *r*.

- When r = 0 we have a false premise.
- Assume the claim for r, and take f with r + 1 colours.
- ► A case distinction on "the colour *r* appears infinitely often":
 - If yes, then we have found a monochromatic subsequence
 - If not, we take the subsequence after the last appearance of the colour r and apply the induction hypothesis

A case study: Infinite Pigeon Hole Principle

IPH is non-constructive

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Thus, we cannot have a program

- taking r and f as inputs
- and providing an *infinite* subsequence f_m of colour q

But: we can have a program

- taking r, f and a number n as inputs
- and providing a *finite* subsequence of length *n* and colour *q* t should reflect the finitary computational meaning of IPH.

A case study: Infinite Pigeon Hole Principle

IPH is non-constructive

$$\forall_r \forall_f (\forall_k (f_k < r) \rightarrow \tilde{\exists}_q \forall_n \tilde{\exists}_m (m \ge n \land f_m = q))$$

Thus, we cannot have a program

- taking r and f as inputs
- and providing an *infinite* subsequence f_m of colour q

But: we can have a program

- taking r, f and a number n as inputs
- and providing a *finite* subsequence of length *n* and colour *q*. It should reflect the finitary computational meaning of IPH.

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)

Any infinite sequence coloured with finitely many colours has a finite monochromatic subsequence of any given length.

Proof. Induction on *n*, using IPH to provide the next element in the subsequence.

A constructive proof exists, but explicit construction is needed!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)

Any infinite sequence coloured with finitely many colours has a finite monochromatic subsequence of any given length.

Proof.

Induction on *n*, using IPH to provide the next element in the subsequence.

A constructive proof exists, but explicit construction is needed!

(日) (日) (日) (日) (日) (日) (日)

A case study: Infinite Pigeon Hole Principle

A finitary corollary of IPH

Corollary (Unbounded Pigeon Hole Principle)

Any infinite sequence coloured with finitely many colours has a finite monochromatic subsequence of any given length.

Proof.

Induction on *n*, using IPH to provide the next element in the subsequence.

A constructive proof exists, but explicit construction is needed!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ► between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaac...

- The program returns the smallest possible indices of the same colour
- ► between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaac...

- The program returns the smallest possible indices of the same colour
- ► between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abac<mark>b</mark>bcbaac...

- The program returns the smallest possible indices of the same colour
- ► between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacb<mark>b</mark>cbaac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbb<mark>c</mark>baac...

- The program returns the smallest possible indices of the same colour
- ► between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbb<mark>c</mark>baac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbb<mark>c</mark>baac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbb<mark>c</mark>baac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbc<mark>b</mark>aac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbc<mark>b</mark>aac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbc<mark>b</mark>aac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcb<mark>a</mark>ac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcba<mark>a</mark>c...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaac...

- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- ▶ between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

- When a higher colour occurs, lists of lower colours are reset
- The program returns the smallest possible indices of the same colour
- between which no higher colour occurs

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaa<mark>c</mark>...

Worst time complexity is O(n^r)

- However, average time complexity is $O(n \cdot r)$
- which is the same as the complexity of a naïve algorithm

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaa<mark>c</mark>...

- Worst time complexity is O(n^r)
- However, average time complexity is $O(n \cdot r)$

which is the same as the complexity of a naïve algorithm

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Extracting from the Infinite Pigeon Hole principle

A-translation: Example run

abacbbcbaac...

- Worst time complexity is O(n^r)
- However, average time complexity is $O(n \cdot r)$
- which is the same as the complexity of a naïve algorithm

-Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

IPH corresponds to an abstract backtracking scheme

- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

(日) (日) (日) (日) (日) (日) (日)

-Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

(日) (日) (日) (日) (日) (日) (日)

-Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

(日) (日) (日) (日) (日) (日) (日)

-Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

-Extracting from the Infinite Pigeon Hole principle

A-translation: Specific features

- IPH corresponds to an abstract backtracking scheme
- The type of the final result is determined by the corollary
- Extracted programs follow continuation-passing style
- Computed witnesses are immediately passed to continuations
- Case distinctions on decidable definite formulas determine:
 - Should we accept the witness (identity)
 - or should we backtrack (call an alternative continuation)

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

Color	List
С	[]
b	[]
а	[]

- ▶ For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

Color	List
С	[]
b	[]
а	[]

- ► For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

Color	List
С	[]
b	[]
а	[] []

- ▶ For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

Color	List
С	[]
b	[]
а	[0]

- ▶ For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- ▶ For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- ▶ For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- ► For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababc<mark>b</mark>cbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcb<mark>c</mark>baacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbc<mark>b</mark>aacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbc<mark>b</mark>aacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababc<mark>b</mark>cbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbc<mark>b</mark>aacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbc<mark>b</mark>aacbac...

- ► For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcb<mark>a</mark>acbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcba<mark>a</mark>cbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●
- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▶ Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaac<mark>b</mark>ac...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacb<mark>a</mark>c...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacba<mark>c</mark>...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacba<mark>c</mark>...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacba<mark>c</mark>...

- For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

▶ Both worst and average time complexity are $O(n^r)$

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Example run

ababcbcbaacbac...

- ► For each colour we store the *last* failure index
- and use it as a candidate witness for the higher colour
- Both worst and average time complexity are $O(n^r)$

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

IPH corresponds to a concrete backtracking scheme

- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample

Backtracking is controlled by checking counterexamples:

 If the counterexample is valid, the witness is not correct backtrack

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

(日) (日) (日) (日) (日) (日) (日)

-Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack

(日) (日) (日) (日) (日) (日) (日)

- Extracting from the Infinite Pigeon Hole principle

Dialectica: Specific features

- IPH corresponds to a concrete backtracking scheme
- Program for IPH expects a "challenging" function
- Programs return
 - Candidate for a witness
 - Candidate for a counterexample
- Backtracking is controlled by checking counterexamples:
 - If the counterexample is valid, the witness is not correct backtrack
 - If the counterexample is not valid, return the witness

Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Extracting from the Infinite Pigeon Hole principle

- The complexity is high, because we wait for the *last* failure index
- What if we changed the program to find the *first* failure index instead?
- Returned subsequences will be the same as with the A-translation program!
- But time complexity is still $O(n^r)$
- Even though we return the first failure index, we recheck its validity on every step
- To obtain faster programs we need to optimise the extraction method internally

- Conclusions and further work

Conclusion

Programs from classical proofs are backtracking schemes

- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Conclusion

- Programs from classical proofs are backtracking schemes
- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Conclusion

- Programs from classical proofs are backtracking schemes
- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Conclusion

- Programs from classical proofs are backtracking schemes
- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Conclusion

- Programs from classical proofs are backtracking schemes
- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Conclusion

- Programs from classical proofs are backtracking schemes
- A-translation extracts an abstract backtracking scheme
- Dialectica extracts a concrete backtracking scheme
- Methods control the backtracking process in specific ways

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Dialectica needs optimisation to match A-translation
- Extract from Ramsey's theorem

- Conclusions and further work

Thank you

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ