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Introduction Generalisation Proof

Ghilardi’s theorem

Theorem

For the arbitrary formula ϕ the following are equivalent:

ϕ is projective.

Modϕ has the extension property and is not empty.
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Extension property
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Definition

A class K of Kripke models has the extension property if for all

rooted models K1, . . . ,Kn ∈ K there is an extension of
n∑

i=1
Ki that

belongs to K .
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Projective formulas

Definition

A substitution σ is a function from atoms to formulas. The
domain of σ is extended to all formulas, by stipulating that σ
commutes with the connectives.

Definition

A formula ϕ is projective iff there exists a substitution σ such that

` σϕ
ϕ ` σp ↔ p, for every atom p.
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Theorem

Fix a number n ∈ ω. For the arbitrary formula ϕ the following are
equivalent:

ϕ is ??–projective.

Modϕ has the extension property up to n and is not empty.
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L–projective formulas

Definition

A formula ϕ is projective iff there exists a substitution σ such that

` σϕ
ϕ ` σp ↔ p, for every atom p.

Definition

Given an intermediate logic L, a formula ϕ is L–projective iff there
exists a substitution σ such that

L̀
σϕ

ϕ
L̀
σp ↔ p, for every atom p.
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The Tn–logics

Definition

For every n ∈ ω, Tn is the logic of finite n–ary trees.

Theorem (Gabbay and de Jongh)

CPC = T0 ⊃ · · · ⊃ Tn ⊃ Tn+1 ⊃ · · · ⊃
⋂

n∈ω
Tn = IPC

Tn is axiomatised over IPC by the scheme

tn =
n∧

i=0

(
(Ai →

j 6=i∨
i=1

Aj)→
j 6=i∨
i=1

Aj

)
→

n∨
i=0

Ai

Each Tn is decidable.

If n ≥ 2 then Tn has the disjunction property.

Each Tn has the extension property up to n but not up to
n + 1.
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Refined version

Theorem

Fix a number n ∈ ω. For the arbitrary formula ϕ the following are
equivalent:

ϕ is ??–projective.

ϕ is Tn–projective.

Modϕ has the extension property up to n and is not empty.

Treen–Modϕ has the extension property up to n and is not
empty.
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Constructing σ∗K , an example
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Substitutions as mappings

Definition

Given a substitution σ and a Kripke model K , we construct the
Kripke model σ∗K based on the frame of K and with assignment
defined as:

(σ∗K )u |= p ⇐⇒ Ku |= σp

for every atom p and every node u of K .

Lemma

Let σ, τ be substitutions, ϕ be a formula and K be a Kripke
model. Then,

(σ∗K )u = σ∗(Ku)

σ∗K |= ϕ ⇐⇒ K |= σϕ

(στ)∗K = τ∗(σ∗K )

σ∗K = τ∗K ⇐⇒ for all variables p : K |= σp ↔ τp
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Substitutions as mappings

Lemma

Let σ be a projective substitution of a formula ϕ. If K is a Kripke
model that satisfies ϕ, then σ∗K = K .

Projectivity condition

ϕ ` σp ↔ p, for every atom p.

K

Modϕ
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Substitutions as mappings

Lemma

Let σ be an L–projective substitution of a formula ϕ. If K is a
Kripke L–model that satisfies ϕ, then σ∗K = K .

Projectivity condition

ϕ
L̀
σp ↔ p, for every atom p.

KL

Modϕ
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“Easy” direction

Proof.

⇒) Assume that ϕ is projective and let K1, . . . ,Kn be models

that satisfy ϕ.

Let M be an extension of
n∑

i=1
Ki . We show that a

variant of M satisfies ϕ.

` σϕ [where σ is the projective unifier of ϕ]
⇒ M |= σϕ [by soundness]
⇒ σ∗M |= ϕ

⇒
n∑

i=1
σ∗Ki

ext
∨ r |= ϕ [where r = {p | σ∗M |= p}]

Therefore, Modϕ has the extension property.
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Difficult direction

We assume that Treen–Modϕ has the extension property up
to n.

We have constructed θϕ so that it is a Tn–projective
substitution of ϕ. So, it remains to show that θϕ is a
Tn–unifier of ϕ.

We prove by induction on the arbitrary Treen–model K that
θϕ
∗K |= ϕ.

⇒
T̀n
θϕϕ
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θ–substitutions

Definition

Given a formula ϕ and a set of atoms α, the substitution θ αϕ is
defined as

θ αϕ (p) =

{
ϕ→ p, if p ∈ α
ϕ ∧ p, if p /∈ α

Lemma (Properties of θ–substitutions)

Every θ αϕ –substitution is a projective substitution of ϕ

If K |= ϕ then (θ αϕ )∗K = K

If K |6= ϕ then either

V ((θ αϕ )∗K ) = α
V ((θ αϕ )∗K ) ⊂ α and for all atoms p ∈ α \ V ((θ αϕ )∗K ) there is
a node u of K different from the root such that Ku |= ϕ and
Ku |6= p
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θ–substitutions

Definition

Let ϕ be a formula and let ~p be the set of atoms occurring in ϕ.
Let α1, α2, . . . , αs be a linear ordering of the subsets of ~p such that

αi ⊆ αj ⇒ i ≤ j

For each i ≤ s, define the substitutions

θϕ ↓ i = θ αs
ϕ . . . θ αi

ϕ and θϕ = θϕ ↓1

(Note that θϕ is a Tn–projective substitution for ϕ as a
composition of Tn–projective substitutions.)
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The proof

The inductive argument

The induction hypothesis is that for every u ∈ K such that Ku |6= ϕ
there exists an i such that

(θϕ ↓ i)∗(Ku) |= ϕ

and i is maximum with that property.
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The proof

Lemma

Given a formula ϕ and a set of atoms α,

if K is an one–node Kripke model, then

K |6= ϕ⇒ V ((θ αϕ )∗K ) = α

if K is a rooted Kripke model which does not satisfy ϕ and
there is a variant K ′ of K which satisfies ϕ, then

(θ V (K ′)
ϕ )∗(K ) = K ′
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