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For the arbitrary formula ¢ the following are equivalent:
@ ( is projective.

@ Mody has the extension property and is not empty.
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belongs to 7 .

A class £ of Kripke models has the extension property if for all
n
rooted models Ki, ..., K, € J there is an extension of Y  K; that
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A substitution o is a function from atoms to formulas. The

domain of ¢ is extended to all formulas, by stipulating that o
commutes with the connectives.
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@ vt op <« p, for every atom p.
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A class £ of Kripke models has the extension property up to n if
n
for all models K, ..., K, € ¢ there is an extension of )

Kie x.
i=1
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Fix a number n € w. For the arbitrary formula ¢ the following are
equivalent:

@ © is ?7—projective.

@ Mody has the extension property up to n and is not empty.
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o Fop

@ vk op <« p, for every atom p.

A formula ¢ is projective iff there exists a substitution o such that
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A formula ¢ is projective iff there exists a substitution o such that
o Fop

@ wF op <« p, for every atom p.

Given an intermediate logic L, a formula ¢ is L—projective iff there
exists a substitution ¢ such that
® oy

@ plrop < p, for every atom p.
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For every n € w, T, is the logic of finite n—ary trees. I

«O>r «Fr <

it
-

DA



For every n € w, T, is the logic of finite n—ary trees. I

e CPC=TyD - DTyDTp1D---2> NTa=IPC

new

A



Introduction Generalisation Proof

The T,—logics
Definition

For every n € w, T, is the logic of finite n—ary trees.

Theorem (Gabbay and de Jongh)
@ CPC=TpD---DTpDTh1D---D (Ta=1IPC

new

e T, is axiomatised over IPC by the scheme

JF JF

fn—/\(AH\/A = V4 \/
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Introduction Generalisation

The T,—logics
Definition

For every n € w, T, is the logic of finite n—ary trees.

Theorem (Gabbay and de Jongh)
@ CPC=TpD---DTpDTh1D---D (Ta=1IPC

new

e T, is axiomatised over IPC by the scheme
JF#i JF

tn—/\<AH\/A = V4 \/

Each T, is decidable.
If n > 2 then T, has the disjunction property.

n+1.

Each T, has the extension property up to n but not up to

Proof
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Fix a number n € w. For the arbitrary formula ¢ the following are
equivalent:
@ © is ?7—projective.

@ Modyp has the extension property up to n and is not empty.
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equivalent:
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Fix a number n € w. For the arbitrary formula ¢ the following are
equivalent:
e © is Ty—projective.

o Tree,—Mody has the extension property up to n and is not
empty.
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Substitutions as mappings

Definition
Given a substitution o and a Kripke model K, we construct the
Kripke model o*K based on the frame of K and with assignment

defined as:
(c"K)uEp < K,EoOop

for every atom p and every node u of K.
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Substitutions as mappings

Definition

Given a substitution o and a Kripke model K, we construct the
Kripke model o*K based on the frame of K and with assignment
defined as:

(c"K)uEp < K,EoOop

for every atom p and every node u of K.

Lemma

Let o, T be substitutions, ¢ be a formula and K be a Kripke
model. Then,

o (0*K), = o*(Ky)

e i'KEp < KEoyp

o (07)*K = 7*(0*K)

@ 0*K =71*K <= for all variablesp : K |=op < p




Let o be a projective substitution of a formula ¢. If K is a Kripke
model that satisfies o, then oK = K.
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Let o be a projective substitution of a formula ¢. If K is a Kripke
model that satisfies o, then oK = K.

@k op < p, for every atom p. l
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Let o be an L—projective substitution of a formula p. If K is a
Kripke L—model that satisfies ¢, then c*K = K.

@ lzop < p, for every atom p. '
y
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=) Assume that ¢ is projective and let Ki,..., K, be models
that satisfy .
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=) Assume that ¢ is projective and let Ki, ..., K, be models
that satisfy ¢.

n
= EK,'e\jtr |= )
i=1
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Generalisation Proof
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“Easy” direction

Proof.
=) Assume that ¢ is projective and let Ki, ..., K, be models

n

that satisfy ¢.  Let M be an extension of )  K;. We show that a
i=1

variant of M satisfies (.

n
= Y KVrEo
i=1
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“Easy” direction

Proof.
=) Assume that ¢ is projective and let Ki, ..., K, be models
n
that satisfy ¢.  Let M be an extension of )  K;. We show that a
i=1
variant of M satisfies (.
Fop [where o is the projective unifier of ¢]
= MEop [by soundness|
= o*M[E ¢
n
= Y 0*KVr =@ [where r = {p| o*M |= p}]
=1

1
n

= Y KVrEo
i=1
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“Easy” direction

Proof.
=) Assume that ¢ is projective and let Ki,..., K, be models
n

that satisfy ¢.  Let M be an extension of > K;. We show that a
i=1
variant of M satisfies (.

Fop [where o is the projective unifier of ¢]

= MEop [by soundness|
="M

n

= S 0*KVr =@  [where r = {p| o*M |= p}]
i=1
n

= S KVrk= o [since each K; = ¢]
i=1

Therefore, Mod has the extension property. O]
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@ We assume that Tree,—Mody has the extension property up
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Difficult direction

@ We assume that Tree,—Mody has the extension property up
to n.

@ We have constructed 6, so that it is a T,—projective
substitution of . So, it remains to show that 6, is a
Ta—unifier of .
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Difficult direction

@ We assume that Tree,—Mody has the extension property up
to n.

@ We have constructed 6, so that it is a T,—projective
substitution of . So, it remains to show that 6, is a
Ta—unifier of .

@ We prove by induction on the arbitrary Tree,—model K that
0,°K = .

o = K = 0,p, for all Tree,—models K.

o =f, Opp



defined as

p—p, fpea
0%(p) =
o (P) {so/\p,

ifpda

Given a formula ¢ and a set of atoms «, the substitution 6 is
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Given a formula ¢ and a set of atoms «, the substitution 6 is
defined as

o —p, fpea
ew(p)={“”

© AP,

ifpda
o Every 07 —substitution is a projective substitution of ¢
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f—substitutions

Definition
Given a formula ¢ and a set of atoms «, the substitution 67 is

defined as
o —p, fpea
G(M—{w .
eAp, ifpéa

Lemma (Properties of §—substitutions)
o Every 07 —substitution is a projective substitution of ¢
o If K |= ¢ then (05)'K = K
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f—substitutions

Definition
Given a formula ¢ and a set of atoms «, the substitution 67 is

defined as
p—p, fpea

Hg(p): {cp/\p, ifpda

Lemma (Properties of §—substitutions)
o Every 07 —substitution is a projective substitution of ¢
o If K |= ¢ then (05)'K = K
o If K | ¢ then either
o V((05)'K) =«
o V((05)"K) C a and for all atoms p € a'\ V((05)*K) there is
a node u of K different from the root such that K, = ¢ and

Ku}#P
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f—substitutions

Definition
Let ¢ be a formula and let g be the set of atoms occurring in .
Let a1, a9, ..., as be a linear ordering of the subsets of p such that

ajCaj=i<j
For each i < s, define the substitutions
Opli=0g°...057 and 0,=10,]1

(Note that 6, is a T,—projective substitution for ¢ as a
composition of T,—projective substitutions.)




The induction hypothesis is that for every u € K such that K, £ ¢
there exists an 7 such that

(0 L0)"(Ku) ¢

and / is maximum with that property.

«O» «Fr « =>»

<

DA



Given a formula ¢ and a set of atoms «,
o if K is an one-node Kripke model, then

K o= V((62)'K) = a
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The proof

Lemma
Given a formula ¢ and a set of atoms «,

e if K is an one—node Kripke model, then
K o= V((GS)*K) =

e if K is a rooted Kripke model which does not satisfy ¢ and
there is a variant K’ of K which satisfies , then

(0 *Y (K) = K’

Proof
00000C
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