▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A generalisation of Ghilardi's theorem

Nikolas Vaporis

Department of Philosophy Utrecht University

Logic Colloquium 2009 Sofia

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Ghilardi's theorem

Theorem

For the arbitrary formula φ the following are equivalent:

- φ is projective.
- $Mod\varphi$ has the extension property and is not empty.

Generalisation
00000

Extension property

Introduction	
0000000	

Extension property

Introduction	
0000000	

Proof

Extension property

Introduction	Generalisation
0000000	00000

Extension property

Definition

A class \mathscr{K} of Kripke models has the extension property if for all rooted models $K_1, \ldots, K_n \in \mathscr{K}$ there is an extension of $\sum_{i=1}^n K_i$ that belongs to \mathscr{K} .

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Projective formulas

Definition

A substitution σ is a function from atoms to formulas. The domain of σ is extended to all formulas, by stipulating that σ commutes with the connectives.

Projective formulas

Definition

A substitution σ is a function from atoms to formulas. The domain of σ is extended to all formulas, by stipulating that σ commutes with the connectives.

Definition

A formula φ is projective iff there exists a substitution σ such that

- $\bullet \vdash \sigma \varphi$
- $\varphi \vdash \sigma p \leftrightarrow p$, for every atom p.

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Ghilardi's theorem

Theorem

For the arbitrary formula φ the following are equivalent:

- φ is projective.
- $Mod\varphi$ has the extension property and is not empty.

In	tr	0	d	u	С	t	i	0	I	1
0	0	0	0	0	C)	0	С		

Proof 000000

Extension property up to n

In	tr	0	d	u	С	t	i	0	I	1
0	0	0	0	0	C)	0	С		

Proof 000000

Extension property up to n

In	tr	0	d	u	С	t	i	0	I	1
0	0	0	0	0	C)	0	С		

Proof 000000

Extension property up to n

Introductio	n
0000000	

Proof 000000

▲ロト ▲冊ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Extension property up to n

Definition

A class \mathscr{K} of Kripke models has the extension property up to n if for all models $K_1, \ldots, K_n \in \mathscr{K}$ there is an extension of $\sum_{i=1}^n K_i \in \mathscr{K}$.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Theorem

- φ is ??-projective.
- $\operatorname{Mod} \varphi$ has the extension property up to n and is not empty.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

L-projective formulas

Definition

A formula φ is projective iff there exists a substitution σ such that

- $\bullet \vdash \sigma \varphi$
- $\varphi \vdash \sigma p \leftrightarrow p$, for every atom p.

L-projective formulas

Definition

A formula φ is projective iff there exists a substitution σ such that

- $\bullet \vdash \sigma \varphi$
- $\varphi \vdash \sigma p \leftrightarrow p$, for every atom p.

Definition

Given an intermediate logic L, a formula φ is L-projective iff there exists a substitution σ such that

- $\bullet \models_{\!\!\!\! L} \sigma \varphi$
- $\varphi \vdash_{L} \sigma p \leftrightarrow p$, for every atom p.

Intro	duct	ion
000	000	0

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

The T_n -logics

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Theorem (Gabbay and de Jongh)

•
$$\mathsf{CPC} = \mathsf{T}_0 \supset \cdots \supset \mathsf{T}_n \supset \mathsf{T}_{n+1} \supset \cdots \supset \bigcap_{n \in \omega} \mathsf{T}_n = \mathsf{IPC}$$

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Theorem (Gabbay and de Jongh)

- $\mathsf{CPC} = \mathsf{T}_0 \supset \cdots \supset \mathsf{T}_n \supset \mathsf{T}_{n+1} \supset \cdots \supset \bigcap_{n \in \omega} \mathsf{T}_n = \mathsf{IPC}$
- $\bullet~T_n$ is axiomatised over IPC by the scheme

$$t_n = \bigwedge_{i=0}^n ((A_i \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=0}^n A_i$$

naa

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Theorem (Gabbay and de Jongh)

- $\mathsf{CPC} = \mathsf{T}_0 \supset \cdots \supset \mathsf{T}_n \supset \mathsf{T}_{n+1} \supset \cdots \supset \bigcap_{n \in \omega} \mathsf{T}_n = \mathsf{IPC}$
- $\bullet~T_n$ is axiomatised over IPC by the scheme

$$t_n = \bigwedge_{i=0}^n ((A_i \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=0}^n A_i$$

• Each **T**_n is decidable.

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Theorem (Gabbay and de Jongh)

- $CPC = T_0 \supset \cdots \supset T_n \supset T_{n+1} \supset \cdots \supset \bigcap_{n \in \omega} T_n = IPC$
- $\bullet~T_n$ is axiomatised over IPC by the scheme

$$t_n = \bigwedge_{i=0}^n \left((A_i \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=1}^{j \neq i} A_j \right) \to \bigvee_{i=0}^n A_i$$

- Each **T**_n is decidable.
- If $n \ge 2$ then \mathbf{T}_n has the disjunction property.

Definition

For every $n \in \omega$, \mathbf{T}_n is the logic of finite *n*-ary trees.

Theorem (Gabbay and de Jongh)

- $\mathsf{CPC} = \mathsf{T}_0 \supset \cdots \supset \mathsf{T}_n \supset \mathsf{T}_{n+1} \supset \cdots \supset \bigcap_{n \in \omega} \mathsf{T}_n = \mathsf{IPC}$
- $\bullet~T_n$ is axiomatised over IPC by the scheme

$$t_n = \bigwedge_{i=0}^n ((A_i \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=1}^{j \neq i} A_j) \to \bigvee_{i=0}^n A_i$$

- Each **T**_n is decidable.
- If $n \ge 2$ then $\mathbf{T_n}$ has the disjunction property.
- Each T_n has the extension property up to n but not up to n+1.

Refined version

Theorem

- φ is ??-projective.
- $\operatorname{Mod} \varphi$ has the extension property up to n and is not empty.

Refined version

Theorem

- φ is T_n -projective.
- $\operatorname{Mod} \varphi$ has the extension property up to n and is not empty.

Refined version

Theorem

- φ is $\mathbf{T_n}$ -projective.
- $\operatorname{Mod} \varphi$ has the extension property up to n and is not empty.

Refined version

Theorem

- φ is $\mathbf{T_n}$ -projective.
- Tree_n-Modφ has the extension property up to n and is not empty.

Generalisation

Proof ●00000

Constructing $\sigma^* K$, an example

Κ

Generalisation

Constructing $\sigma^* K$, an example

Generalisation

Constructing $\sigma^* K$, an example

Generalisation

Constructing $\sigma^* K$, an example

Substitutions as mappings

Definition

Given a substitution σ and a Kripke model K, we construct the Kripke model σ^*K based on the frame of K and with assignment defined as:

$$(\sigma^*K)_u \models p \iff K_u \models \sigma p$$

for every atom p and every node u of K.

Substitutions as mappings

Definition

Given a substitution σ and a Kripke model K, we construct the Kripke model σ^*K based on the frame of K and with assignment defined as:

$$(\sigma^* K)_u \models p \iff K_u \models \sigma p$$

for every atom p and every node u of K.

Lemma

Let σ , τ be substitutions, φ be a formula and K be a Kripke model. Then,

- $(\sigma^*K)_u = \sigma^*(K_u)$
- $\sigma^* K \models \varphi \iff K \models \sigma \varphi$
- $(\sigma \tau)^* K = \tau^* (\sigma^* K)$
- $\sigma^*K = \tau^*K \iff$ for all variables $p : K \models \sigma p \leftrightarrow \tau p$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくで

Substitutions as mappings

Lemma

Let σ be a projective substitution of a formula φ . If K is a Kripke model that satisfies φ , then $\sigma^*K = K$.

Substitutions as mappings

Lemma

Let σ be a projective substitution of a formula φ . If K is a Kripke model that satisfies φ , then $\sigma^*K = K$.

Projectivity condition

 $\varphi \vdash \sigma p \leftrightarrow p$, for every atom p.

Substitutions as mappings

Lemma

Let σ be a projective substitution of a formula φ . If K is a Kripke model that satisfies φ , then $\sigma^*K = K$.

Projectivity condition

 $\varphi \vdash \sigma p \leftrightarrow p$, for every atom p.

Substitutions as mappings

Lemma

Let σ be an L-projective substitution of a formula φ . If K is a Kripke L-model that satisfies φ , then $\sigma^* K = K$.

Projectivity condition

 $\varphi \vdash_{\!\!L} \sigma p \leftrightarrow p$, for every atom p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

"Easy" direction

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \ldots, K_n \text{ be models}$

that satisfy φ .

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \ldots, K_n \text{ be models}$ that satisfy φ .

$$\Rightarrow \sum_{i=1}^{n} K_i \overset{\text{ext}}{\lor} r \models \varphi$$

▲ロ > ▲母 > ▲目 > ▲目 > □目 _ のへで

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \dots, K_n \text{ be models}$ that satisfy φ . Let M be an extension of $\sum_{i=1}^n K_i$. We show that a variant of M satisfies φ .

$$\Rightarrow \sum_{i=1}^{n} K_i \overset{\text{ext}}{\lor} r \models \varphi$$

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \ldots, K_n \text{ be models}$ that satisfy φ . Let M be an extension of $\sum_{i=1}^n K_i$. We show that a variant of M satisfies φ .

 $\vdash \sigma \varphi \qquad \qquad [\text{where } \sigma \text{ is the projective unifier of } \varphi]$

$$\Rightarrow \sum_{i=1}^{n} K_i \overset{\text{ext}}{\lor} r \models \varphi$$

▲日 > ▲母 > ▲田 > ▲田 > ―田 = ろんの

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \dots, K_n \text{ be models} \\ \text{that satisfy } \varphi. \quad \text{Let } M \text{ be an extension of } \sum_{i=1}^n K_i. \text{ We show that a} \\ \text{variant of } M \text{ satisfies } \varphi. \end{aligned}$

 $\vdash \sigma \varphi \qquad \qquad [\text{where } \sigma \text{ is the projective unifier of } \varphi] \\ \Rightarrow M \models \sigma \varphi \qquad \qquad [\text{by soundness}]$

$$\Rightarrow \sum_{i=1}^{n} K_i \overset{\text{ext}}{\lor} r \models \varphi$$

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \dots, K_n \text{ be models}$ that satisfy φ . Let M be an extension of $\sum_{i=1}^n K_i$. We show that a variant of M satisfies φ .

$$\begin{array}{c} \vdash \sigma\varphi \\ \Rightarrow M \models \sigma\varphi \\ \Rightarrow \sigma^*M \models \varphi \end{array}$$

[where σ is the projective unifier of φ] [by soundness]

$$\Rightarrow \sum_{i=1}^{n} K_i \overset{\text{ext}}{\lor} r \models \varphi$$

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \dots, K_n \text{ be models}$ that satisfy φ . Let M be an extension of $\sum_{i=1}^n K_i$. We show that a variant of M satisfies φ .

$$\vdash \sigma \varphi \qquad [\text{where } \sigma \text{ is the projective unifier of } \varphi] \\ \Rightarrow M \models \sigma \varphi \qquad [\text{by soundness}] \\ \Rightarrow \sigma^* M \models \varphi \\ \Rightarrow \sum_{i=1}^n \sigma^* K_i^{\text{ext}} r \models \varphi \qquad [\text{where } r = \{p \mid \sigma^* M \models p\}] \\ \Rightarrow \sum_{i=1}^n K_i^{\text{ext}} r \models \varphi \end{cases}$$

 φ

3

Sac

A D > A D > A D > A D >

"Easy" direction

Proof.

 $\Rightarrow) \quad \text{Assume that } \varphi \text{ is projective and let } K_1, \dots, K_n \text{ be models}$ that satisfy φ . Let M be an extension of $\sum_{i=1}^n K_i$. We show that a variant of M satisfies φ .

$$\begin{split} \vdash \sigma\varphi & [\text{where } \sigma \text{ is the projective unifier of} \\ \Rightarrow M \models \sigma\varphi & [\text{by soundness}] \\ \Rightarrow \sigma^*M \models \varphi \\ \Rightarrow \sum_{i=1}^n \sigma^* K_i^{\text{ext}} r \models \varphi & [\text{where } r = \{p \mid \sigma^*M \models p\}] \\ \Rightarrow \sum_{i=1}^n K_i^{\text{ext}} r \models \varphi & [\text{since each } K_i \models \varphi] \end{split}$$

Therefore, ${
m Mod} arphi$ has the extension property.

Introduction 0000000	Generalisation 00000	Proof
Difficult direction		

 \bullet We assume that ${\bf Tree_n}{\rm -Mod}\varphi$ has the extension property up to ${\it n}.$

Introdu	ction
00000	00

Difficult direction

- We assume that $\mathbf{Tree_n}\text{-}\mathrm{Mod}\varphi$ has the extension property up to n.
- We have constructed θ_{φ} so that it is a $\mathbf{T_n}$ -projective substitution of φ . So, it remains to show that θ_{φ} is a $\mathbf{T_n}$ -unifier of φ .

Introduction	
0000000	

Difficult direction

- We assume that ${\bf Tree_n}{\rm -Mod}\varphi$ has the extension property up to ${\it n}.$
- We have constructed θ_φ so that it is a T_n-projective substitution of φ. So, it remains to show that θ_φ is a T_n-unifier of φ.

•
$$\Rightarrow \vdash_{\tau_n} \theta_{\varphi} \varphi$$

Introducti	ion
000000	С

Difficult direction

- We assume that ${\bf Tree_n}{\rm -Mod}\varphi$ has the extension property up to ${\it n}.$
- We have constructed θ_{φ} so that it is a $\mathbf{T_n}$ -projective substitution of φ . So, it remains to show that θ_{φ} is a $\mathbf{T_n}$ -unifier of φ .

• $\Rightarrow K \models \theta_{\varphi} \varphi$, where K is a **Tree**_n-model. • $\Rightarrow \vdash_{\tau_n} \theta_{\varphi} \varphi$

Introd	uction
0000	000

Difficult direction

- We assume that ${\bf Tree_n}{\rm -Mod}\varphi$ has the extension property up to ${\it n}.$
- We have constructed θ_{φ} so that it is a $\mathbf{T_n}$ -projective substitution of φ . So, it remains to show that θ_{φ} is a $\mathbf{T_n}$ -unifier of φ .

$$\bullet \Rightarrow \theta_{\varphi}^* K \models \varphi$$

- $\Rightarrow K \models \theta_{\varphi} \varphi$, where K is a **Tree**_n-model.
- $\bullet \; \Rightarrow \vdash_{{{{ {\rm T}}}_{{\rm n}}}} \theta_{\varphi} \varphi \;$

Intro	duct	ion
0000	000	0

Difficult direction

- We assume that ${\bf Tree_n}{\rm -Mod}\varphi$ has the extension property up to ${\it n}.$
- We have constructed θ_{φ} so that it is a $\mathbf{T_n}$ -projective substitution of φ . So, it remains to show that θ_{φ} is a $\mathbf{T_n}$ -unifier of φ .
- We prove by induction on the arbitrary **Tree**_n-model K that $\theta_{\varphi}^{*}K \models \varphi$.
- $\Rightarrow K \models \theta_{\varphi} \varphi$, for all **Tree**_n-models *K*.
- $\bullet \; \Rightarrow \vdash_{\mathsf{T}_n} \theta_{\varphi} \varphi$

Int	rod	uct	ion
00	000	00	0

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

θ -substitutions

Definition

Given a formula φ and a set of atoms $\alpha,$ the substitution $\theta^{\,\alpha}_{\varphi}$ is defined as

$$heta_{arphi}^{\,\,lpha}(p) = egin{cases} arphi o p, & ext{if } p \in lpha \ arphi \wedge p, & ext{if } p
otin lpha \ lpha \end{pmatrix}$$

Introd	uction
0000	000

θ -substitutions

Definition

Given a formula φ and a set of atoms $\alpha,$ the substitution $\theta_{\varphi}^{\,\alpha}$ is defined as

$$heta_{\varphi}^{\,\,lpha}(p) = egin{cases} arphi o p, & ext{if } p \in lpha \ arphi \wedge p, & ext{if } p
otin lpha \ arphi \end{pmatrix}$$

Lemma (Properties of θ -substitutions)

• Every $\theta_{\varphi}^{\,\alpha}$ -substitution is a projective substitution of φ

Introduc	tion
00000	00

θ -substitutions

Definition

Given a formula φ and a set of atoms $\alpha,$ the substitution $\theta_{\varphi}^{\,\alpha}$ is defined as

$$heta_{arphi}^{lpha}(p) = egin{cases} arphi o p, & ext{if } p \in lpha \ arphi \wedge p, & ext{if } p
otin lpha \ lpha \end{pmatrix}$$

Lemma (Properties of θ -substitutions)

• Every $\theta_{\varphi}^{\,\alpha}$ -substitution is a projective substitution of φ

• If
$${\sf K}\models arphi$$
 then $(heta_arphi^{\,lpha})^*{\sf K}={\sf K}$

Introduc	tion
00000	00

θ -substitutions

Definition

Given a formula φ and a set of atoms $\alpha,$ the substitution $\theta_{\varphi}^{\,\alpha}$ is defined as

$$heta^{\,lpha}_{arphi}({\it p}) = egin{cases} arphi o {\it p}, & ext{if $p \in lpha$} \ arphi \wedge {\it p}, & ext{if $p \notin lpha$} \end{cases}$$

Lemma (Properties of θ -substitutions)

- Every $\theta_{\varphi}^{\,\alpha}$ -substitution is a projective substitution of φ
- If $K \models \varphi$ then $(\theta_{\varphi}^{\alpha})^* K = K$
- If $K \not\models \varphi$ then either
 - $V((\theta_{\varphi}^{\alpha})^*K) = \alpha$
 - $V((\theta_{\varphi}^{\alpha})^*K) \subset \alpha$ and for all atoms $p \in \alpha \setminus V((\theta_{\varphi}^{\alpha})^*K)$ there is a node u of K different from the root such that $K_u \models \varphi$ and $K_u \not\models p$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

θ -substitutions

Definition

Let φ be a formula and let \vec{p} be the set of atoms occurring in φ . Let $\alpha_1, \alpha_2, \ldots, \alpha_s$ be a linear ordering of the subsets of \vec{p} such that

 $\alpha_i \subseteq \alpha_j \Rightarrow i \leq j$

For each $i \leq s$, define the substitutions

 $\theta_{\varphi}\!\downarrow\! i=\theta_{\varphi}^{\,\alpha_s}\dots\theta_{\varphi}^{\,\alpha_i}\quad\text{ and }\quad \theta_{\varphi}=\theta_{\varphi}\!\downarrow\! 1$

(Note that θ_{φ} is a T_n -projective substitution for φ as a composition of T_n -projective substitutions.)

The proof

The inductive argument

The induction hypothesis is that for every $u \in K$ such that $K_u \not\models \varphi$ there exists an i such that

$$(\theta_{\varphi} \downarrow i)^*(K_u) \models \varphi$$

and *i* is maximum with that property.

The proof

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Lemma

Given a formula φ and a set of atoms α ,

• if K is an one-node Kripke model, then

$${\sf K}\not\models\varphi\Rightarrow{\sf V}((\theta_\varphi^\alpha)^*{\sf K})=\alpha$$

The proof

Lemma

Given a formula φ and a set of atoms α ,

• if K is an one-node Kripke model, then

$$K \not\models \varphi \Rightarrow V((\theta_{\varphi}^{\alpha})^*K) = \alpha$$

 if K is a rooted Kripke model which does not satisfy φ and there is a variant K' of K which satisfies φ, then

 $(heta_{arphi}^{V(K')})^*(K) = K'$