Splitting properties in 2-c.e. degrees.

M.M.Yamaleev

Kazan State University, Kazan

Definitions and conventions.

All sets are subsets of the set of natural numbers $\omega=\{0,1,2 \ldots\}$. If a set $A \subseteq \omega$ is Turing reducible to $B \subseteq \omega$ then we denote $A \leq_{T} B$.
$A \equiv_{T} B$ iff $A \leq_{T} B$ and $B \leq_{T} A$.
$\mathbf{a}=\operatorname{deg}(A)=\left\{B \mid B \equiv_{T} A\right\}$.

The degrees with " \leq " and " \cup " form an upper semilattice, where $\mathbf{a} \cup \mathbf{b}=\operatorname{deg}(A \oplus B)$ and $A \oplus B=\{2 x \mid x \in A\} \cup\{2 x+1 \mid x \in B\}$.

Also in this structure a jump operator is defined such that $\mathbf{b} \leq \mathbf{a} \rightarrow \mathbf{b}^{\prime} \leq \mathbf{a}^{\prime}$.

We will consider only Turing degrees $\leq 0^{\prime}$, where $0^{\prime}=\operatorname{deg}(K)$ is the degree of halting problem.

Let a set $A \leq_{T} K$, so $A(x)=\lim _{s} f(x, s)$, $f(x, 0)=0$, where f is a computable function. A set A is n-computable enumerable (c.e.), if for any $x \quad|\{s \mid f(x, s) \neq f(x, s+1)\}| \leq n$. The degree of the set $\mathbf{a}=\operatorname{deg}(A)$ is n-c.e.; if it also doesn't consist ($n-1$)-c.e. sets, then is has a properly n-c.e. degree.

Definition. Degree a is splittable in a class of degrees \mathcal{C} if there exist degrees $\mathbf{x}_{\mathbf{0}}, \mathbf{x}_{\mathbf{1}} \in \mathcal{C}$ such that $\mathbf{a}=\mathbf{x}_{\mathbf{0}} \cup \mathbf{x}_{\mathbf{1}}$ and $\mathrm{x}_{0}, \mathrm{x}_{1}<\mathbf{a}$.

Definition. For a given degrees x and \mathbf{y} we say that that the degree \mathbf{x} avoids the upper (lower) cone of \mathbf{y} if $\mathbf{y} \not \leq \mathbf{x}$ ($\mathrm{x} \not \leq \mathrm{y}$) .

Given degrees $\mathbf{0}<\mathbf{b}<\mathbf{a}$ and a splitting of $\mathrm{a}=\mathrm{x}_{0} \cup \mathrm{x}_{1}$

Definition. If $\mathbf{b} \not \leq \mathbf{x}_{\mathbf{i}}(i=0,1)$ then \mathbf{a} is splittable avoiding upper cone of \mathbf{b}.

Definition. If $\mathbf{b} \leq \mathbf{x}_{\mathbf{i}}(i=0,1)$ then \mathbf{a} is splittable above b.

By default we assume that \mathcal{C} is the smallest class containing a. E.g., in the finite levels of Ershov's hierarchy we usually try to split in the same level.
[Sacks, 1963] Splitting of c.e. degrees (can be generalized to avoid upper cone of any noncomputable Δ_{2}^{0}-degree).
[Robinson, ≈ 1970] Splitting of c.e. degrees above low c.e. degrees.
[Arslanov, Cooper, Li; 1992, 2002, 2004] Splitting of 2-c.e. degrees. Splitting above c.e. degrees, splitting above low 2-c.e. degrees.

Another direction of research is splitting with avoiding cones. Theorem 1 provides sufficient conditions for a properly 2 c.e. degree a to be splitted avoiding upper cone of Δ_{2}^{0} degree d. In general case it's not possible since to the theorem of Arslanov, Kalimullin and Lempp (also it follows from the theorem of Cooper and Li or Thereom 3 provided below).
[Arslanov, Kalimullin, Lempp, 2003] There exist noncomputable 2-c.e. degrees $\mathbf{b}<\mathbf{a}$ such that for any 2-c.e. degree \mathbf{v} : $\mathrm{v} \leq \mathrm{a} \longrightarrow([\mathrm{v} \leq \mathrm{b}] \vee[\mathrm{b} \leq \mathrm{v}])$.

It is known as "bubble". Notice, that the middle degree \mathbf{b} is c.e. degree.
[Cooper, Li, 2004] For any $n \geq 2$ there exist n-c.e. degree \mathbf{a}, c.e. degree \mathbf{b} such that $\mathbf{0}<\mathbf{b}<\mathbf{a}$ and such that for any n-c.e. degrees \mathbf{x}_{0} and $\mathrm{x}_{1}: \mathbf{a}=\mathrm{x}_{0} \cup \mathrm{x}_{1} \longrightarrow$ ($\left[\mathrm{b} \leq \mathrm{x}_{0}\right] \vee\left[\mathrm{b} \leq \mathrm{x}_{1}\right]$).

Sufficient conditions for a 2-c.e. degree a to be splittable avoiding upper cone of Δ_{2}^{0} degree below it.

Theorem 1. Let a and d be properly 2-c.e. degrees such that $\mathbf{0}<\mathbf{d}<\mathbf{a}$ and there are no c.e. degrees between a and d. Then a is splittable avoiding upper cone of d .

Theorem 1 generalizes Cooper's splitting theorem in 2-c.e. degrees. Also it generalizes Sacks's splitting theorem in c.e. degrees in the following sense: we can consider $2-c . e$ degrees instead of c.e. and c.e. degree instead of computable degree (we will have the same type of isolating).

The question arises about a characterization, which could express the isolation in terms of splitting and vice versa. One may assume that if a 2-c.e. degree a above d is splittable avoiding the upper cone of \mathbf{d} then there are no c.e. degrees between \mathbf{d} and \mathbf{a}. The above mentioned "the bubble existence theorem" can be considered as a confirmation of this assumption. But Theorem 2 shows that this doesn't hold.

Theorem 2. There exist a c.e. degree $\mathrm{b}, 2-c . e$. degrees $\mathrm{d}, \mathrm{a}, \mathrm{x}_{0}, \mathrm{x}_{1}$ such that $0<\mathrm{d}<\mathrm{b}<\mathrm{a}, \quad \mathrm{a}=\mathrm{x}_{0} \cup \mathrm{x}_{1}, \mathrm{x}_{0}<\mathrm{a}$, $\mathrm{x}_{1}<\mathrm{a}, \mathrm{d} \not \not \not \mathrm{x}_{0}, \mathrm{~d} \not \not \not \mathrm{x}_{1}$ and d and a have properly 2 -c.e. degrees.

Sketch of the proof of Theorem 2.

Note that considering a c.e. degree c instead of the degree \mathbf{d} we can construct sets A, B, C, X_{0}, X_{1} and assign corresponding degrees $\mathbf{c}=\operatorname{deg}(C), \mathbf{b}=\operatorname{deg}(C \oplus B)$,
$\mathrm{a}=\operatorname{deg}(C \oplus B \oplus A), \mathrm{x}_{0}=\operatorname{deg}\left(X_{0}\right), \mathrm{x}_{1}=\operatorname{deg}\left(X_{1}\right)$.
Then it follows from the weak density theorem (Cooper, Lempp, Watson, 1989]) that there exists a properly 2-c.e. degree \mathbf{d} such that $\mathbf{c}<\mathbf{d}<\mathbf{b}$. The degree \mathbf{d} is the desired degree.

Therefore, it's enough to construct sets A, B, C, X_{0}, X_{1}, satisfying the following requirements (we construct sets X_{0}, X_{1} avoiding the lower cone of C for uniformity).
$\mathcal{R}_{e}:$
$X_{0} \oplus X_{1} \not \equiv_{T} W_{e} ;$
$\mathcal{S}_{2 e}^{C}: \quad X_{0} \neq \Phi_{e}^{C} ;$
$\mathcal{S}_{2 e+1}^{C}: \quad X_{1} \neq \Phi_{e}^{C} ;$
$\mathcal{S}_{2 e}^{X}:$
$C \neq \Phi_{e}^{X_{0}} ;$
$\mathcal{S}_{2 e+1}^{X}:$
$C \neq \Phi_{e}^{X_{1}} ;$
$\mathcal{N}_{e}:$
$B \neq \Phi_{e}^{C} ;$
$\mathcal{T}: \quad B \oplus C \leq_{T} X_{0} \oplus X_{1}$.
For the requirement \mathcal{T} we define $A=X_{0} \oplus X_{1}$ and $\operatorname{deg}(C \oplus B \oplus A)=\operatorname{deg}(A)$.

The strategy for the requirement $\mathcal{S}_{2 e}^{X}$ takes in attention the requirement \mathcal{T}.
Assigning a witness y we define a computable function-marker $\alpha(y)$, and enumerating y into C we enumerate the marker $\alpha(y)$ into X_{1}. The same for requirements $\mathcal{N} e$.

Corollaries of Theorem 1.

Middle of the "bubble" is c.e. degree. Proof.

1) There no c.e. degrees between d and b, otherwise we can split it by Sacks's splitting theorem.
2) If d has properly 2 -c.e. degree then we apply theorem 1 and the previous statement 1 . So, contradiction again.

no c.e. degrees

There are no "3-bubbles" in 2-c.e. degrees. Because of previous corollary the degrees \mathbf{a} and \mathbf{b} are c.e. So, we can apply to a Sacks's splitting theorem.

Definition.

A set A is low if $A^{\prime} \equiv_{T} K$. A set A is n-low for $n>1$ if $A^{(n)} \equiv_{T} K^{(n-1)}$. Respectively degrees a $=\operatorname{deg}(A)$ are low (n-low).

The following theorem shows that "bubble" could be constructed in low 2-c.e. degrees.

Theorem 3. There exist low noncomputable $2-c . e$. degrees $\mathbf{b}<\mathbf{a}$ such that for any $2-c . e$. degree $\mathbf{v} \leq \mathbf{a}$ either $\mathbf{v} \leq \mathbf{b}$ or $\mathbf{b} \leq \mathbf{v}$.

Theorem 3 with Sacks's splitting theorem lead to the elementary difference of partial orders of low c.e. and low 2-c.e degrees. Moreover, since every 1-low degree is n-low for any $n>1$ partial orders of n-low c.e. and n-low 2-c.e. degrees are not elementarily equivalent.
[Downey, Stob, 1993],[Downey, Yu, 2004] noticed that the question in the case of 2-low was open.

The following sentence φ shows that these partial orders are not elementarily equivalent.

$$
\begin{aligned}
& \varphi=\exists \mathbf{a}, \mathbf{b} \forall \mathbf{v}(0<\mathbf{b}<\mathbf{a}) \wedge[(\mathbf{v} \leq \mathbf{a}) \longrightarrow \\
& (\mathbf{b} \leq \mathrm{v}) \vee(\mathrm{v} \leq \mathbf{b})] .
\end{aligned}
$$

[Faizrahmanov, 2008] in the case of 1-low c.e. and 1-low 2-c.e. degrees also get elementary difference. And another way to proof this result uses strongly noncuppability in 1-low c.e. degrees.

But these couldn't be applied immediately for the general case of n-low degrees.

Some observation in n-c.e. degrees.

Theorem 4*. Let a and d be properly n-c.e. and properly k-c.e. degrees, respectively, such that $k \geq n, \mathbf{0}<\mathbf{d}<\mathbf{a}$ and there are no ($n-1$)-c.e. degrees between a and d . Then a is splittable avoiding upper cone of \mathbf{d}.

Corollary 1*. If $\mathbf{b}<\mathbf{a}_{0}$ are properly k-c.e. and properly $m_{0}-c . e$. degrees, respectively, and if they form "bubble" in n-c.e. degrees (for some $n \geq \max \left(k, m_{0}\right)$) then $k<m_{0}$.

Proof. Every n-c.e. degree strictly between b and a_{0} also forms "bubble" with b in n-c.e. degrees. Clear, that there exist properly m-c.e. ($m \leq m_{0}$) degree a such that there no ($m-1$)-c.e. degrees between b and a. So, if $k \geq m_{0}$ then $k \geq m$ and by Theorem 4* a is splittable in m-c.e. degrees avoiding upper cone of b. Contradiction with the "bubble".

$$
\geq m_{\text {-c.е. }}^{m_{0}}
$$

Definition. Degrees $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ form " n-bubble" $(n>2)$ in a class of degrees \mathcal{C} if $\mathbf{a}_{i} \in \mathcal{C},(i=1, \ldots, n), \mathbf{0}<\mathbf{a}_{1}<\mathbf{a}_{2}<$ $\ldots<\mathbf{a}_{n}$, the degrees $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n-1}$ form " $(n-1)$-bubble" and every degree from \mathcal{C} and below \mathbf{a}_{n} is comparable with \mathbf{a}_{n-1}.

By corollary 2* "n-bubbles" could be only of the following type.

Corollary 2*. There are no " $(n+1)$ bubbles" in n-c.e. degrees

Proof. Let $P(a)$ be a function such that $P(\mathbf{a})=k$ where \mathbf{a} is properly k-c.e. degree. If $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n+1}$ form " $n+1$)bubble" in n-c.e. degrees, then
$P\left(\mathbf{a}_{1}\right)<P\left(\mathbf{a}_{2}\right)<\ldots<P\left(\mathbf{a}_{n+1}\right) \leq n$. This involves that $P\left(\mathbf{a}_{1}\right) \leq 0$. Contradiction.

Also we can see that " n-bubble" in n-c.e. degrees is unique (if it exists).

So, if such " n-bubble" exists and if Theorem 4* holds then we get that n-c.e. and m-c.e. degrees are not elementarily equivalent for any $n \neq m$.

Question. Does " n-bubble" exist in n-c.e. degrees?

THANK YOU FOR ATTENTION!

