Splitting properties in 2-c.e. degrees.

M.M.Yamaleev

Kazan State University, Kazan

Definitions and conventions.

All sets are subsets of the set of natural numbers $\omega = \{0, 1, 2...\}$. If a set $A \subseteq \omega$ is Turing reducible to $B \subseteq \omega$ then we denote $A \leq_T B$.

$$A \equiv_T B$$
 iff $A \leq_T B$ and $B \leq_T A$.

$$\mathbf{a} = deg(A) = \{B \mid B \equiv_T A\}.$$

The degrees with " \leq " and " \cup " form an upper semilattice, where $\mathbf{a} \cup \mathbf{b} = deg(A \oplus B)$ and $A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$

Also in this structure a jump operator is defined such that $\mathbf{b} \leq \mathbf{a} \rightarrow \mathbf{b}' \leq \mathbf{a}'.$

We will consider only Turing degrees $\leq 0'$, where $0' = \deg(K)$ is the degree of halting problem.

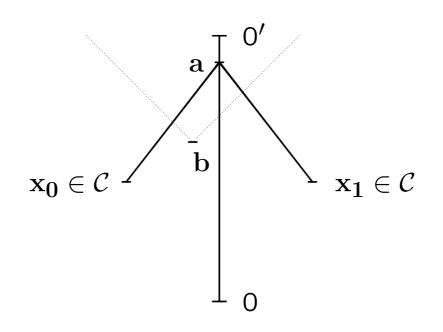
Let a set $A \leq_T K$, so $A(x) = \lim_s f(x, s)$, f(x, 0) = 0, where f is a computable function. A set A is n-computable enumerable (c.e.), if for any $x |\{s|f(x,s) \neq f(x,s+1)\}| \leq n$. The degree of the set $\mathbf{a} = deg(A)$ is n-c.e.; if it also doesn't consist (n - 1)-c.e. sets, then is has a properly n-c.e. degree.

Definition. For a given degrees x and y we say that that the degree x avoids the upper (lower) cone of y if $y \nleq x$ $(x \nleq y)$.

Given degrees 0 < b < a and a splitting of $a = x_0 \cup x_1$

Definition. If $\mathbf{b} \nleq \mathbf{x_i} (i = 0, 1)$ then \mathbf{a} is splittable avoiding upper cone of \mathbf{b} .

Definition. If $\mathbf{b} \leq \mathbf{x_i} (i = 0, 1)$ then \mathbf{a} is splittable above \mathbf{b} .

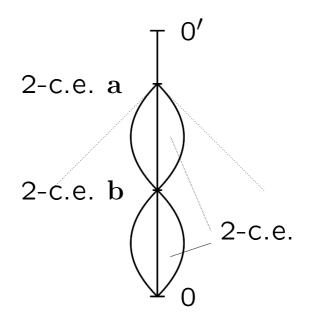


By default we assume that C is the smallest class containing a. E.g., in the finite levels of Ershov's hierarchy we usually try to split in the same level.

[Sacks, 1963] Splitting of c.e. degrees (can be generalized to avoid upper cone of any noncomputable Δ_2^0 -degree).

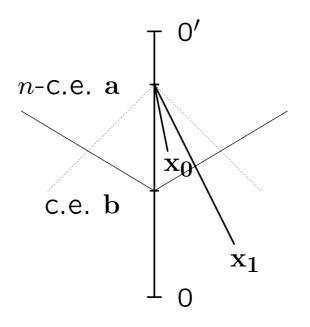
[Robinson, \approx 1970] Splitting of c.e. degrees above low c.e. degrees.

[Arslanov, Cooper, Li; 1992, 2002, 2004] Splitting of 2-c.e. degrees. Splitting above c.e. degrees, splitting above low 2-c.e. degrees. Another direction of research is splitting with avoiding cones. Theorem 1 provides sufficient conditions for a properly 2c.e. degree a to be splitted avoiding upper cone of Δ_2^0 degree d. In general case it's not possible since to the theorem of Arslanov, Kalimullin and Lempp (also it follows from the theorem of Cooper and Li or Thereom 3 provided below). [Arslanov, Kalimullin, Lempp, 2003] There exist noncomputable 2-c.e. degrees $\mathbf{b} < \mathbf{a}$ such that for any 2-c.e. degree \mathbf{v} : $\mathbf{v} \leq \mathbf{a} \longrightarrow ([\mathbf{v} \leq \mathbf{b}] \lor [\mathbf{b} \leq \mathbf{v}]).$



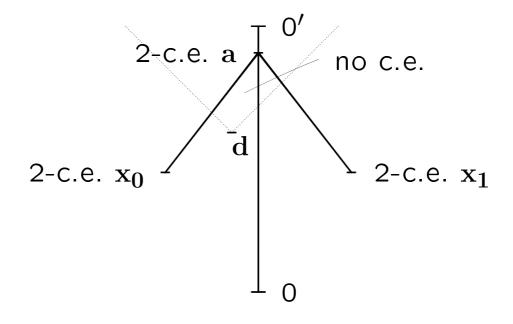
It is known as "bubble". Notice, that the middle degree \mathbf{b} is c.e. degree.

[Cooper, Li, 2004] For any $n \ge 2$ there exist *n*-c.e. degree \mathbf{a} , c.e. degree \mathbf{b} such that $\mathbf{0} < \mathbf{b} < \mathbf{a}$ and such that for any *n*-c.e. degrees \mathbf{x}_0 and \mathbf{x}_1 : $\mathbf{a} = \mathbf{x}_0 \cup \mathbf{x}_1 \longrightarrow ([\mathbf{b} \le \mathbf{x}_0] \lor [\mathbf{b} \le \mathbf{x}_1]).$



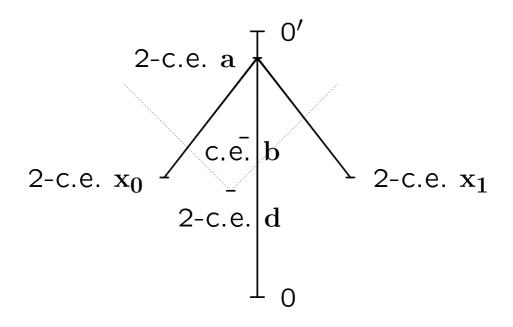
Sufficient conditions for a 2-c.e. degree a to be splittable avoiding upper cone of Δ_2^0 degree below it.

Theorem 1. Let a and d be properly 2-c.e. degrees such that 0 < d < a and there are no c.e. degrees between a and d. Then a is splittable avoiding upper cone of d.



Theorem 1 generalizes Cooper's splitting theorem in 2-c.e. degrees. Also it generalizes Sacks's splitting theorem in c.e. degrees in the following sense: we can consider 2-c.e. degrees instead of c.e. and c.e. degree instead of computable degree (we will have the same type of isolating).

The question arises about a characterization, which could express the isolation in terms of splitting and vice versa. One may assume that if a 2-c.e. degree a above d is splittable avoiding the upper cone of d then there are no c.e. degrees between d and a. The above mentioned "the bubble existence theorem" can be considered as a confirmation of this assumption. But Theorem 2 shows that this doesn't hold. **Theorem 2.** There exist a c.e. degree b, 2-c.e. degrees d, a, x_0 , x_1 such that 0 < d < b < a, $a = x_0 \cup x_1$, $x_0 < a$, $x_1 < a$, $d \nleq x_0$, $d \nleq x_1$ and d and a have properly 2-c.e. degrees.



Sketch of the proof of Theorem 2.

Note that considering a c.e. degree c instead of the degree d we can construct sets A, B, C, X_0, X_1 and assign corresponding degrees c=deg(C), $b=deg(C \oplus B)$, $a=deg(C \oplus B \oplus A)$, $x_0=deg(X_0)$, $x_1=deg(X_1)$. Then it follows from the weak density theorem (Cooper, Lempp, Watson, 1989]) that there exists a properly 2-c.e. degree d such that c < d < b. The degree d is the desired degree.

Therefore, it's enough to construct sets A, B, C, X_0, X_1 , satisfying the following requirements (we construct sets X_0, X_1 avoiding the lower cone of C for uniformity).

\mathcal{R}_e :	$X_0 \oplus X_1 \not\equiv_T W_e;$
\mathcal{S}^C_{2e} :	$X_0 \neq \Phi_e^C;$
\mathcal{S}^C_{2e+1} :	$X_1 \neq \Phi_e^C;$
\mathcal{S}^X_{2e} :	$C \neq \Phi_e^{X_0};$
\mathcal{S}^X_{2e+1} :	$C \neq \Phi_e^{X_1};$
\mathcal{N}_e :	$B \neq \Phi_e^C$;
\mathcal{T} :	$B \oplus C \leq_T X_0 \oplus X_1.$

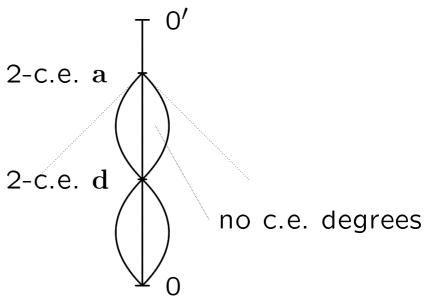
For the requirement \mathcal{T} we define $A = X_0 \oplus X_1$ and $\deg(C \oplus B \oplus A) = \deg(A)$.

The strategy for the requirement S_{2e}^X takes in attention the requirement \mathcal{T} . Assigning a witness y we define a computable function-marker $\alpha(y)$, and enumerating y into C we enumerate the marker $\alpha(y)$ into X_1 . The same for requirements \mathcal{N}_e . Corollaries of Theorem 1.

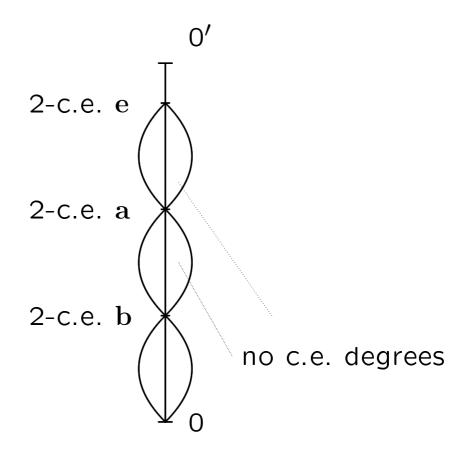
Middle of the "bubble" is c.e. degree. Proof.

 There no c.e. degrees between d and b, otherwise we can split it by Sacks's splitting theorem.

2) If d has properly 2-c.e. degree then we apply theorem 1 and the previous statement 1. So, contradiction again.



There are no "3-bubbles" in 2-c.e. degrees. Because of previous corollary the degrees a and b are c.e. So, we can apply to a Sacks's splitting theorem.

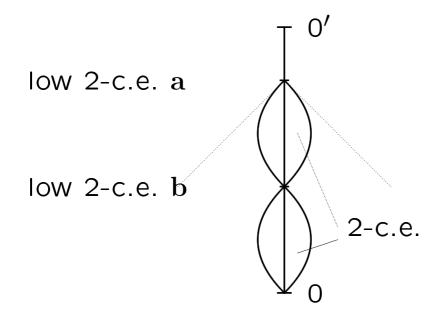


Definition.

A set A is low if $A' \equiv_T K$. A set A is *n*-low for n > 1 if $A^{(n)} \equiv_T K^{(n-1)}$. Respectively degrees a = deg(A) are low (*n*-low).

The following theorem shows that "bubble" could be constructed in low 2-c.e. degrees.

Theorem 3. There exist low noncomputable 2-c.e. degrees $\mathbf{b} < \mathbf{a}$ such that for any 2-c.e. degree $\mathbf{v} \leq \mathbf{a}$ either $\mathbf{v} \leq \mathbf{b}$ or $\mathbf{b} \leq \mathbf{v}$.



Theorem 3 with Sacks's splitting theorem lead to the elementary difference of partial orders of low c.e. and low 2-c.e degrees. Moreover, since every 1-low degree is n-low for any n > 1 partial orders of n-low c.e. and n-low 2-c.e. degrees are not elementarily equivalent.

[Downey, Stob, 1993], [Downey, Yu, 2004] noticed that the question in the case of 2-low was open. The following sentence φ shows that these partial orders are not elementarily equivalent.

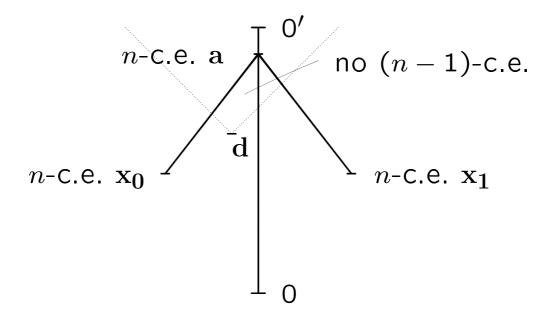
$$\begin{split} \varphi &= \exists \ \mathbf{a}, \ \mathbf{b} \ \forall \ \mathbf{v} \ (\mathbf{0} < \mathbf{b} < \mathbf{a}) \land [(\mathbf{v} \leq \mathbf{a}) \longrightarrow \\ (\mathbf{b} \leq \mathbf{v}) \lor (\mathbf{v} \leq \mathbf{b})]. \end{split}$$

[Faizrahmanov, 2008] in the case of 1-low c.e. and 1-low 2-c.e. degrees also get elementary difference. And another way to proof this result uses strongly noncuppability in 1-low c.e. degrees.

But these couldn't be applied immediately for the general case of n-low degrees.

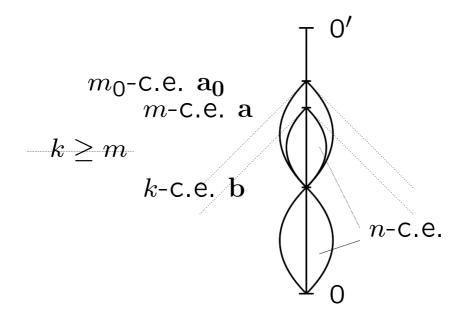
Some observation in n-c.e. degrees.

Theorem 4*. Let a and d be properly n-c.e. and properly k-c.e. degrees, respectively, such that $k \ge n$, 0 < d < a and there are no (n - 1)-c.e. degrees between a and d. Then a is splittable avoiding upper cone of d.

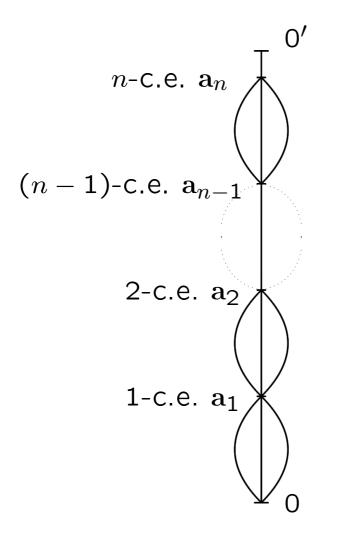


Corollary 1*. If $b < a_0$ are properly k-c.e. and properly m_0 -c.e. degrees, respectively, and if they form "bubble" in n-c.e. degrees (for some $n \ge max(k, m_0)$) then $k < m_0$.

Proof. Every *n*-c.e. degree strictly between b and a_0 also forms "bubble" with b in *n*-c.e. degrees. Clear, that there exist properly *m*-c.e. $(m \le m_0)$ degree a such that there no (m-1)-c.e. degrees between b and a. So, if $k \ge m_0$ then $k \ge m$ and by Theorem 4* a is splittable in *m*-c.e. degrees avoiding upper cone of b. Contradiction with the "bubble".



Definition. Degrees a_1 , a_2 , ..., a_n form "*n*-bubble" (n > 2) in a class of degrees C if $a_i \in C$, (i = 1, ..., n), $0 < a_1 < a_2 <$... $< a_n$, the degrees a_1 , a_2 , ..., a_{n-1} form "(n-1)-bubble" and every degree from C and below a_n is comparable with a_{n-1} . By corollary 2^* "*n*-bubbles" could be only of the following type.



Corollary 2*. There are no "(n + 1)bubbles" in *n*-c.e. degrees

Proof. Let $P(\mathbf{a})$ be a function such that $P(\mathbf{a}) = k$ where \mathbf{a} is properly k-c.e. degree. If $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_{n+1}$ form "(n+1)bubble" in n-c.e. degrees, then $P(\mathbf{a}_1) < P(\mathbf{a}_2) < \dots < P(\mathbf{a}_{n+1}) \leq n$. This involves that $P(\mathbf{a}_1) \leq 0$. Contradiction.

Also we can see that "n-bubble" in n-c.e. degrees is unique (if it exists).

So, if such "*n*-bubble" exists and if Theorem 4* holds then we get that *n*-c.e. and *m*-c.e. degrees are not elementarily equivalent for any $n \neq m$.

Question. Does "*n*-bubble" exist in *n*-c.e. degrees?

THANK YOU FOR ATTENTION!