Strongly η -representable sets and limitwise monotonic functions.

Maxim Zubkov

Kazan State University

Sofia, August 5, 2009.

Let $\{a_0, a_1, a_2, ...\}$ be an enumeration (perhaps with repetitions) of a set $A \subseteq \omega$. Then

 \blacktriangleright a linear order $\mathcal L$ of the following order type

$$\eta + a_0 + \eta + a_1 + \eta + a_2 + \eta + \dots$$

is called an η -representation of A;

- if a₀ ≤ a₁ ≤ a₂... then L is called an increasing η-representation of A;
- if a₀ < a₁ < a₂... then L is called a strong η-representation of A;
- a set A is η-representable (increasing η-representable, strongly η-representable) if it has a computable η-representation (increasing η-representation, strong η-representation).

- [Feiner] Every η -representable set is Σ_3^0 .
- [Lerman] The class of η-representable Turing degrees is the class of Σ₃⁰ degrees.
- [Rosenstein] Every Σ⁰₂ set has a computable strong η-representation.
- [Fellner] Every Π_2^0 set has a computable strong η -representation.
- [Rosenstein] If A has a computable strongly η -representation then A is Δ_3^0 .
- [Lerman] There is a Δ_3^0 set which has no computable η -representation.

- [Downey] Which degree contains strongly η-representable sets? In particular, is each Δ⁰₃ degrees strongly η-representable?
- [Harris] There is a Δ⁰₃ degree without strongly η-representable sets.

- [Downey] Which degree contains strongly η-representable sets? In particular, is each Δ⁰₃ degrees strongly η-representable?
- [Harris] There is a Δ_3^0 degree without strongly η -representable sets.

• Theorem (with A. N. Frolov) If $A \in \Delta_3^0$ then $A \oplus \omega$ is increasing η -representable.

• Theorem (with A. N. Frolov) If $A \in \Delta_3^0$ then $A \oplus \omega$ is increasing η -representable.

▶ Theorem

A set A is increasing η -representable iff A is η -representable and $A \in \Delta_3^0$.

► Theorem (with A. N. Frolov) If $A \in \Delta_3^0$ then $A \oplus \omega$ is increasing η -representable.

► Theorem

A set A is increasing η -representable iff A is η -representable and $A \in \Delta_3^0$.

► Theorem (with A. N. Frolov)

If $A \in \Delta_3^0$ then $A \oplus \omega$ is increasing η -representable.

► Theorem

A set A is increasing η -representable iff A is η -representable and $A \in \Delta_3^0$.

► Definition

A function F is called 0'-limitwise monotonic if there is a 0'-computable function f such that:

1)
$$(\forall x)[\lim_{s} f(x, s) = F(x)]$$

2) $(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)].$

► Definition

A function F is called 0'-limitwise monotonic if there is a 0'-computable function f such that: 1) $(\forall x)[\lim_{t \to 0} f(x, s) = F(x)]$

2)
$$(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)]$$

► Theorem (Harris; Kach, Turetsky)

Let F be a function with computable domain, then TFAE: 1) The function F is 0'-limitwise monotonic. 2) There is a computable function f such that $F(x) = \liminf_{s \to \infty} f(x, s)$ for every $x \in dom(F)$.

► Definition

A function F is called 0'-limitwise monotonic if there is a 0'-computable function f such that:

1)
$$(\forall x)[\lim_{s} f(x, s) = F(x)]$$

2)
$$(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)].$$

Theorem (Harris; Kach, Turetsky)

Let F be a function with computable domain, then TFAE: 1) The function F is **0'**-limitwise monotonic. 2) There is a computable function f such that $F(x) = \liminf_{s \to \infty} f(x, s)$ for every $x \in dom(F)$.

► Definition

A function F is called 0'-limitwise monotonic if there is a 0'-computable function f such that:

1)
$$(\forall x)[\lim_{s} f(x, s) = F(x)]$$

2)
$$(\forall x)(\forall s)[f(x, s) \leq f(x, s+1)].$$

Theorem (Harris; Kach, Turetsky)

Let F be a function with computable domain, then TFAE: 1) The function F is **0**'-limitwise monotonic. 2) There is a computable function f such that $F(x) = \liminf_{s \to \infty} f(x, s)$ for every $x \in dom(F)$.

Theorem (Harris)

A set A is η -representable iff A = rang(F) for some $\mathbf{0}'$ -limitwise monotonic function F.

Theorem (Harris)

There is a strongly η -representable set such that for every **0**'-increasing limitwise monotonic (on ω) function A we have $A \neq rang(F)$.

Definition

A set $supp(F) = \{x \in A \mid F(x) > 1\}$ is called the support of a function $F : A \longrightarrow \omega$.

Definition

Let $\mathcal{L} = \langle L; \langle \mathcal{L} \rangle$ be a linear order and $F : L \longrightarrow \omega$ be a function such that for every n > 1 a set $F^{-1}(n) = \{y \mid F(y) = n\}$ is finite. The function F is called:

- ▶ pseudo increasing on \mathcal{L} , if $(\forall x, y \in supp(F))[x <_{\mathcal{L}} y \Rightarrow F(x) < F(y)];$
- ▶ pseudo nondecreasing on \mathcal{L} , if $(\forall x, y \in supp(F))[x <_{\mathcal{L}} y \Rightarrow F(x) \leq F(y)].$

A set A is increasing η -representable iff there is a **0**'-limitwise monotonic pseudo nondecreasing on \mathbb{Q} function F such that A = rang(F).

Theorem

Turing degree is strongly η -representable iff it contains a range of some **0**'-limitwise monotonic pseudo increasing on \mathbb{Q} function.

Theorem

If $A \in \Sigma_2^0$ and $B \in \Pi_2^0$ then $A \cup B$ has a computable η -representation.

Theorem

Let $h: \omega \times \omega \longrightarrow \{0, 1\}$ and $n: \omega \longrightarrow \omega$ be 0'-computable functions such that for every x we have $|\{s \in \omega \mid h(x, s) \neq h(x, s+1)\}| \leq n(x)$. Then there is a 0'-limitwise monotonic pseudo increasing on \mathbb{Q} function F such that $rang(F) \equiv_T graph(H) \oplus graph(n)$, where $H(x) = \lim_{s \to \infty} h(x, s)$.

Corollary

If $A \leq_{tt} \mathbf{0}''$ then there is a strongly η -representable set $B \equiv_{T} A$.