Inscribing nonmeasurable sets

Szymon Żeberski Wrocław University of Technology

Logic Colloquium, Sofia 2009

Theorem (Gitik, Shelah 2001)

Let $(A_n: n \in \omega)$ be a sequence of subsets of \mathbb{R} . Then we can find a sequence $(B_n: n \in \omega)$ such that

- 1. $B_n \cap B_m = \emptyset$ for $n \neq m$,
- 2. $B_n \subseteq A_n$
- 3. $\lambda^*(A_n) = \lambda^*(B_n)$, where λ^* is outer Lebesgue measure.

Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski 1979)

Let \mathbb{I} be a σ -ideal with Borel base of subsets of \mathbb{R} . Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family (i.e. each $x \in \mathbb{R}$ belongs to finitely many members of \mathcal{A}) such that $\bigcup \mathcal{A} = \mathbb{R}$. Then we can find a subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is \mathbb{I} -nonmeasurable i.e does not belong to the σ -field generated by Borel sets and ideal \mathbb{I} .

Let $\mathbb I$ be a σ -ideal of subsets of $\mathbb R$ with Borel base. Let $N\subseteq X\subseteq \mathbb R$. We say that the set N is *completely* $\mathbb I$ -nonmeasurable in X if

$$(\forall A \in \mathrm{Borel})(A \cap X \not\in \mathbb{I} \to (A \cap N \notin \mathbb{I}) \land (A \cap (X \setminus N) \notin \mathbb{I})).$$

Remark

- ▶ $N \subseteq \mathbb{R}$ is completely \mathbb{L} -nonmeasurable if $\lambda_*(N) = 0$ and $\lambda_*(\mathbb{R} \setminus N) = 0$.
- ► The definition of completely K-nonmeasurability is equivalent to the definition of completely Baire nonmeasurability.
- ▶ *N* is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable iff *N* is a Bernstein set.

Let \mathbb{I} be a σ -ideal of subsets of \mathbb{R} with Borel base. Let $N\subseteq X\subseteq \mathbb{R}$. We say that the set N is *completely* \mathbb{I} -nonmeasurable in X if

$$(\forall A \in \mathrm{Borel})(A \cap X \not\in \mathbb{I} \to (A \cap N \notin \mathbb{I}) \land (A \cap (X \setminus N) \notin \mathbb{I})).$$

Remark

- ▶ $N \subseteq \mathbb{R}$ is completely \mathbb{L} -nonmeasurable if $\lambda_*(N) = 0$ and $\lambda_*(\mathbb{R} \setminus N) = 0$.
- ► The definition of completely K-nonmeasurability is equivalent to the definition of completely Baire nonmeasurability.
- ▶ *N* is completely $[\mathbb{R}]^{\omega}$ -nonmeasurable iff *N* is a Bernstein set.

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I} -minimal Borel set B containing A i.e. $B \setminus A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$. In such case we will write

$$[A]_{\mathbb{I}}=B.$$

Remark

Every c.c.c. σ -ideal with Borel base have the hole property.

Remark

N is completely \mathbb{I} -nonmeasurable in X iff

$$[N]_{\mathbb{I}} = [X]_{\mathbb{I}}$$
 and $[X \setminus N]_{\mathbb{I}} = [X]_{\mathbb{I}}$

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I} -minimal Borel set B containing A i.e. $B \setminus A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$. In such case we will write

$$[A]_{\mathbb{I}}=B.$$

Remark

Every c.c.c. σ -ideal with Borel base have the hole property.

Remark

N is completely \mathbb{I} -nonmeasurable in X iff

$$[N]_{\mathbb{I}} = [X]_{\mathbb{I}}$$
 and $[X \setminus N]_{\mathbb{I}} = [X]_{\mathbb{I}}$.

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I} -minimal Borel set B containing A i.e. $B \setminus A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \setminus C \in \mathbb{I}$.

$$[A]_{\mathbb{I}}=B.$$

Remark

Every c.c.c. σ -ideal with Borel base have the hole property.

Remark

N is completely \mathbb{I} -nonmeasurable in X iff

$$[N]_{\mathbb{I}} = [X]_{\mathbb{I}}$$
 and $[X \setminus N]_{\mathbb{I}} = [X]_{\mathbb{I}}$.

 \mathbb{I} denotes c.c.c. σ -ideal with Borel base of subsets of \mathbb{R} .

- ▶ We say that the cardinal number κ is *quasi-measurable* if there exists κ -additive ideal $\mathcal I$ of subsets of κ such that the Boolean algebra $P(\kappa)/\mathcal I$ satisfies c.c.c.
- ▶ Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda < \kappa$ we have that $\lambda^+ < \kappa$.

Fact

Every quasi-measurable cardinal is weakly inaccessible.

- ▶ We say that the cardinal number κ is *quasi-measurable* if there exists κ -additive ideal \mathcal{I} of subsets of κ such that the Boolean algebra $P(\kappa)/\mathcal{I}$ satisfies c.c.c.
- ▶ Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda < \kappa$ we have that $\lambda^+ < \kappa$.

Fact

Every quasi-measurable cardinal is weakly inaccessible.

- ▶ We say that the cardinal number κ is *quasi-measurable* if there exists κ -additive ideal \mathcal{I} of subsets of κ such that the Boolean algebra $P(\kappa)/\mathcal{I}$ satisfies c.c.c.
- ▶ Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda < \kappa$ we have that $\lambda^+ < \kappa$.

Fact

Every quasi-measurable cardinal is weakly inaccessible.

Theorem (Z 2007)

Assume that there is no quasi-measurable cardinal not greater than continuum.

Let $A \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup A \notin \mathbb{I}$.

Then we can find a subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}$.

Theorem (Rałowski, Ż 2009)

Assume that continuum is the minimal quasi-measurable cardinal. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then we can find a subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}$.

Lemma (Ż 2007)

Let $\{A_{\xi}: \xi \in \omega_1\}$ be any family of subsets of \mathbb{R} . Then we can find a family $\{I_{\alpha}\}_{\alpha \in \omega_1}$ of pairwise disjoint countable subsets of ω_1 such that for $\alpha < \beta < \omega_1$ we have that $[\bigcup_{\xi \in I_{\alpha}} A_{\xi}]_{\mathbb{I}} = [\bigcup_{\xi \in I_{\beta}} A_{\xi}]_{\mathbb{I}}$.

Lemma (Ż 2007)

Assume that there is no quasi-measurable cardinal not greater than 2^{ω} .

Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then there exists a family $\{\mathcal{A}_{\alpha}\}_{\alpha \in \omega_1}$ satisfying the following conditions

- 1. $(\forall \alpha < \omega_1)(\mathcal{A}_{\alpha} \subseteq \mathcal{A} \wedge \bigcup \mathcal{A}_{\alpha} \notin \mathbb{I}),$
- 2. $(\forall \alpha < \beta < \omega_1)(\mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta} = \emptyset),$
- 3. $(\forall \alpha, \beta < \omega_1)([\bigcup \mathcal{A}_{\alpha}]_{\mathbb{I}} = [\bigcup \mathcal{A}_{\beta}]_{\mathbb{I}}).$

Lemma (Ż 2007)

Let $A \subseteq P(\mathbb{R})$ be any point-finite family.

Then there exists a subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $|\mathcal{A} \setminus \mathcal{A}'| \leq \omega$ and

$$(\forall B \in \mathrm{Borel})(\forall A \in \mathcal{A}')(B \cap \bigcup \mathcal{A} \notin \mathbb{I} \to \neg(B \cap \bigcup \mathcal{A} \subseteq B \cap A)).$$

Theorem (\dot{Z})

Assume that there is no quasi-measurable cardinal not greater than 2^{ω} .

Let $A \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup A \notin \mathbb{I}$.

Then there exists a collection of pairwise disjoint subfamilies $\mathcal{A}_{\xi} \subseteq \mathcal{A}$ (for $\xi \in \omega_1$) such that $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}$.

Theorem (\dot{Z})

Assume that 2^{ω} is the least quasi-measurable cardinal. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then there exists a collection of pairwise disjoint subfamilies $\mathcal{A}_{\xi} \subseteq \mathcal{A}$ (for $\xi \in \omega_1$) such that $\bigcup \mathcal{A}_{\xi}$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}$.

Lemma (\dot{Z})

Assume that there is no quasi-measurable cardinal smaller than continuum.

Assume that $A \subseteq \mathbb{I}$ is point-finite family.

Let $(A_n : n \in \omega)$ be a sequence of subsets of A.

Then we can find a sequence $(\mathcal{B}_n : n \in \omega)$ such that

- 1. $\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$ for $n \neq m$,
- 2. $\mathcal{B}_n \subseteq \mathcal{A}_n$,
- 3. $[\bigcup A_n]_{\mathbb{I}} = [\bigcup B_n]_{\mathbb{I}}$.

- ▶ We can find $(\mathcal{B}_0^\alpha)_{\alpha \in \omega_1}$ such that $\bigcup \mathcal{B}_0^\alpha$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_0$
- ► There are at most countably many α 's such that $[\bigcup \mathcal{A}_n \setminus \bigcup \mathcal{B}_0^{\alpha}]_{\mathbb{I}} \neq [\bigcup \mathcal{A}_n]_{\mathbb{I}}$ for every $n \in \omega$.
- \triangleright So, we can find \mathcal{B}_0 such that
 - 1. $\mathcal{B}_0 \subseteq \mathcal{A}_0$,
 - $2. \ [\bigcup \mathcal{B}_0]_{\mathbb{I}} = [\bigcup \mathcal{A}_0]_{\mathbb{I}},$
 - 3. $[\bigcup A_n \setminus \bigcup B_0]_{\mathbb{I}} = [\bigcup A_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ Simple induction. Take for n > 0 $\mathcal{A}'_n = \mathcal{A}_n \setminus \mathcal{B}_0$. By condition $3 [\bigcup \mathcal{A}'_n]_{\mathbb{I}} = [\bigcup \mathcal{A}_n]_{\mathbb{I}}$. So, every completely \mathbb{I} -nonmeasurable set in $\bigcup \mathcal{A}'_n$ remains completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_n$.

- $\qquad \qquad \text{We can find } (\mathcal{B}_0^\alpha)_{\alpha\in\omega_1} \text{ such that } \bigcup \mathcal{B}_0^\alpha \text{ is completely } \\ \mathbb{I}\text{-nonmeasurable in } \bigcup \mathcal{A}_0$
- ▶ There are at most countably many α 's such that $[\bigcup \mathcal{A}_n \setminus \bigcup \mathcal{B}_0^{\alpha}]_{\mathbb{I}} \neq [\bigcup \mathcal{A}_n]_{\mathbb{I}}$ for every $n \in \omega$.
- \triangleright So, we can find \mathcal{B}_0 such that
 - 1. $\mathcal{B}_0 \subseteq \mathcal{A}_0$,
 - $2. \ [\bigcup \mathcal{B}_0]_{\mathbb{I}} = [\bigcup \mathcal{A}_0]_{\mathbb{I}},$
 - 3. $[\bigcup A_n \setminus \bigcup B_0]_{\mathbb{I}} = [\bigcup A_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ Simple induction. Take for n > 0 $\mathcal{A}'_n = \mathcal{A}_n \setminus \mathcal{B}_0$. By condition $3 [\bigcup \mathcal{A}'_n]_{\mathbb{I}} = [\bigcup \mathcal{A}_n]_{\mathbb{I}}$. So, every completely \mathbb{I} -nonmeasurable set in $\bigcup \mathcal{A}'_n$ remains completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_n$.

- $\qquad \qquad \text{We can find } (\mathcal{B}_0^\alpha)_{\alpha\in\omega_1} \text{ such that } \bigcup \mathcal{B}_0^\alpha \text{ is completely } \\ \mathbb{I}\text{-nonmeasurable in } \bigcup \mathcal{A}_0$
- ▶ There are at most countably many α 's such that $[\bigcup \mathcal{A}_n \setminus \bigcup \mathcal{B}_0^{\alpha}]_{\mathbb{I}} \neq [\bigcup \mathcal{A}_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ So, we can find \mathcal{B}_0 such that
 - 1. $\mathcal{B}_0 \subseteq \mathcal{A}_0$,
 - 2. $[\bigcup \mathcal{B}_0]_{\mathbb{I}} = [\bigcup \mathcal{A}_0]_{\mathbb{I}}$,
 - 3. $[\bigcup A_n \setminus \bigcup B_0]_{\mathbb{I}} = [\bigcup A_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ Simple induction. Take for n > 0 $\mathcal{A}'_n = \mathcal{A}_n \setminus \mathcal{B}_0$. By condition $3 [\bigcup \mathcal{A}'_n]_{\mathbb{I}} = [\bigcup \mathcal{A}_n]_{\mathbb{I}}$. So, every completely \mathbb{I} -nonmeasurable set in $\bigcup \mathcal{A}'_n$ remains completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_n$.

- ▶ We can find $(\mathcal{B}_0^\alpha)_{\alpha \in \omega_1}$ such that $\bigcup \mathcal{B}_0^\alpha$ is completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_0$
- ▶ There are at most countably many α 's such that $[\bigcup \mathcal{A}_n \setminus \bigcup \mathcal{B}_0^{\alpha}]_{\mathbb{I}} \neq [\bigcup \mathcal{A}_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ So, we can find \mathcal{B}_0 such that
 - 1. $\mathcal{B}_0 \subseteq \mathcal{A}_0$,
 - $2. \ [\bigcup \mathcal{B}_0]_{\mathbb{I}} = [\bigcup \mathcal{A}_0]_{\mathbb{I}},$
 - 3. $[\bigcup A_n \setminus \bigcup B_0]_{\mathbb{I}} = [\bigcup A_n]_{\mathbb{I}}$ for every $n \in \omega$.
- ▶ Simple induction. Take for n > 0 $\mathcal{A}'_n = \mathcal{A}_n \setminus \mathcal{B}_0$. By condition $3 [\bigcup \mathcal{A}'_n]_{\mathbb{I}} = [\bigcup \mathcal{A}_n]_{\mathbb{I}}$. So, every completely \mathbb{I} -nonmeasurable set in $\bigcup \mathcal{A}'_n$ remains completely \mathbb{I} -nonmeasurable in $\bigcup \mathcal{A}_n$.

Theorem (\dot{Z})

Assume that there is no quasi-measurable cardinal smaller than continuum.

Assume that $A \subseteq \mathbb{I}$ is point-finite family.

Let $(A_n : n \in \omega)$ be a sequence of subsets of A.

Then we can find a sequence $(\mathcal{B}_n^{\xi}: n \in \omega, \ \xi \in \omega_1)$ such that

- 1. $\mathcal{B}_n^{\xi} \cap \mathcal{B}_m^{\zeta} = \emptyset$ for $(n, \xi) \neq (m, \zeta)$,
- 2. $\mathcal{B}_n^{\xi} \subseteq \mathcal{A}_n$,
- 3. $[\bigcup \mathcal{A}_n]_{\mathbb{I}} = [\bigcup \mathcal{B}_n^{\xi}]_{\mathbb{I}}$.

- ▶ Find a collection $\{\mathcal{B}_n: n \in \omega\}$ such that
 - 1. $\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$ for $n \neq m$,
 - 2. $\mathcal{B}_n \subseteq \mathcal{A}_n$,
 - 3. $[\bigcup A_n]_{\mathbb{I}} = [\bigcup B_n]_{\mathbb{I}}$.
- ▶ for each $n \in \omega$ we can find $(\mathcal{B}_n^{\alpha}: \alpha \in \omega_1)$ such that
 - 1. $\mathcal{B}_n^{\alpha} \subseteq \mathcal{B}_n$,
 - 2. $\mathcal{B}_n^{\alpha} \cap \mathcal{B}_n^{\beta} = \emptyset$ for $\alpha \neq \beta$,
 - 3. $\bigcup \mathcal{B}_n^{\alpha}$ is completely \mathbb{I} -nonmeasrable in $\bigcup \mathcal{B}_n$.
- ► The collection $(\mathcal{B}_n^{\alpha}: n \in \omega, \alpha \in \omega_1)$ fulfilles desired conditions.

- ▶ Find a collection $\{\mathcal{B}_n: n \in \omega\}$ such that
 - 1. $\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$ for $n \neq m$,
 - 2. $\mathcal{B}_n \subseteq \mathcal{A}_n$,
 - 3. $[\bigcup A_n]_{\mathbb{I}} = [\bigcup B_n]_{\mathbb{I}}$.
- ▶ for each $n \in \omega$ we can find $(\mathcal{B}_n^{\alpha}: \alpha \in \omega_1)$ such that
 - 1. $\mathcal{B}_n^{\alpha} \subseteq \mathcal{B}_n$,
 - 2. $\mathcal{B}_n^{\alpha} \cap \mathcal{B}_n^{\beta} = \emptyset$ for $\alpha \neq \beta$,
 - 3. $\bigcup \mathcal{B}_n^{\alpha}$ is completely \mathbb{I} -nonmeasrable in $\bigcup \mathcal{B}_n$.
- ► The collection $(\mathcal{B}_n^{\alpha}: n \in \omega, \alpha \in \omega_1)$ fulfilles desired conditions.

- ▶ Find a collection $\{\mathcal{B}_n: n \in \omega\}$ such that
 - 1. $\mathcal{B}_n \cap \mathcal{B}_m = \emptyset$ for $n \neq m$,
 - 2. $\mathcal{B}_n \subseteq \mathcal{A}_n$,
 - 3. $[\bigcup A_n]_{\mathbb{I}} = [\bigcup B_n]_{\mathbb{I}}$.
- ▶ for each $n \in \omega$ we can find $(\mathcal{B}_n^{\alpha}: \alpha \in \omega_1)$ such that
 - 1. $\mathcal{B}_n^{\alpha} \subseteq \mathcal{B}_n$,
 - 2. $\mathcal{B}_{n}^{\alpha} \cap \mathcal{B}_{n}^{\beta} = \emptyset$ for $\alpha \neq \beta$,
 - 3. $\bigcup \mathcal{B}_n^{\alpha}$ is completely \mathbb{I} -nonmeasrable in $\bigcup \mathcal{B}_n$.
- ► The collection $(\mathcal{B}_n^{\alpha}: n \in \omega, \alpha \in \omega_1)$ fulfilles desired conditions.

- J. Brzuchowski, J. Cichoń, E. Grzegorek, C. Ryll-Nardzewski, *On the existence of nonmeasurable unions*, Bull. Polish Acad. Sci. Math. **27** (1979), 447-448.
- J. CICHOŃ, M. MORAYNE, R. RAŁOWSKI, C. RYLL-NARDZEWSKI, S. ŻEBERSKI, *On nonmeasurable unions*, Topology and its Applications 154 (2007), pp.884-893,
- M. GITIK, S. SHELAH, More on real-valued measurable cardinals and forcings with ideals, Israel Journal of Mathematics 124 (1), (2001), pp. 221-242,
- R. RAŁOWSKI, S. ŻEBERSKI, Completely nonmeasurable union, preprint.
- S. ŻEBERSKI, On completely nonmeasurable unions, Mathematical Logic Quarterly 53 (1) (2007), pp.38-42.