Inscribing nonmeasurable sets

Szymon Żeberski
Wrocław University of Technology

Logic Colloquium, Sofia 2009

Theorem (Gitik, Shelah 2001)
Let $\left(A_{n}: n \in \omega\right)$ be a sequence of subsets of \mathbb{R}.
Then we can find a sequence $\left(B_{n}: n \in \omega\right)$ such that

1. $B_{n} \cap B_{m}=\emptyset$ for $n \neq m$,
2. $B_{n} \subseteq A_{n}$,
3. $\lambda^{*}\left(A_{n}\right)=\lambda^{*}\left(B_{n}\right)$, where λ^{*} is outer Lebesgue measure.

Theorem (Brzuchowski, Cichoń, Grzegorek, Ryll-Nardzewski 1979)

Let \mathbb{I} be a σ-ideal with Borel base of subsets of \mathbb{R}.
Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family (i.e. each $x \in \mathbb{R}$ belongs to finitely many members of \mathcal{A}) such that $\bigcup \mathcal{A}=\mathbb{R}$.
Then we can find a subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is
\mathbb{I}-nonmeasurable i.e does not belong to the σ-field generated by Borel sets and ideal II.

Definition

Let \mathbb{I} be a σ-ideal of subsets of \mathbb{R} with Borel base.
Let $N \subseteq X \subseteq \mathbb{R}$. We say that the set N is completely
\mathbb{I}-nonmeasurable in X if

$$
(\forall A \in \operatorname{Borel})(A \cap X \notin \mathbb{I} \rightarrow(A \cap N \notin \mathbb{I}) \wedge(A \cap(X \backslash N) \notin \mathbb{I}))
$$

- $N \subseteq \mathbb{R}$ is completely \mathbb{L}-nonmeasurable if $\lambda_{*}(N)=0$ and $\lambda_{*}(\mathbb{R} \backslash N)=0$.
- The definition of completely \mathbb{K}-nonmeasurability is equivalent to the definition of completely Baire nonmeasurability.
- N is completely $[\mathbb{R}]^{\omega}$-nonmeasurable iff N is a Bernstein set.

Definition

Let \mathbb{I} be a σ-ideal of subsets of \mathbb{R} with Borel base. Let $N \subseteq X \subseteq \mathbb{R}$. We say that the set N is completely \mathbb{I}-nonmeasurable in X if

$$
(\forall A \in \operatorname{Borel})(A \cap X \notin \mathbb{I} \rightarrow(A \cap N \notin \mathbb{I}) \wedge(A \cap(X \backslash N) \notin \mathbb{I}))
$$

Remark

- $N \subseteq \mathbb{R}$ is completely \mathbb{L}-nonmeasurable if $\lambda_{*}(N)=0$ and $\lambda_{*}(\mathbb{R} \backslash N)=0$.
- The definition of completely \mathbb{K}-nonmeasurability is equivalent to the definition of completely Baire nonmeasurability.
- N is completely $[\mathbb{R}]^{\omega}$-nonmeasurable iff N is a Bernstein set.

Definition

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I}-minimal Borel set B containing A i.e. $B \backslash A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.
In such case we will write

$$
[A]_{\mathbb{I}}=B .
$$

Remark

Every c.c.c. σ-ideal with Borel base have the hole property.
Remark
N is completely \mathbb{I}-nonmeasurable in X iff

$$
[N]_{\mathbb{I}}=[X]_{\mathbb{I}} \text { and }[X \backslash N]_{\mathbb{I}}=[X]_{\mathbb{I}} .
$$

Definition

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I}-minimal Borel set B containing A i.e. $B \backslash A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.
In such case we will write

$$
[A]_{\mathbb{I}}=B .
$$

Remark

Every c.c.c. σ-ideal with Borel base have the hole property.
Remark
N is completely \mathbb{I}-nonmeasurable in X iff

$$
[N]_{\mathbb{I}}=[X]_{\mathbb{I}} \text { and }[X \backslash N]_{\mathbb{I}}=[X]_{\mathbb{I}} .
$$

Definition

The ideal $\mathbb{I} \subseteq P(\mathbb{R})$ have the hole property if for every set $A \subseteq \mathbb{R}$ there is a \mathbb{I}-minimal Borel set B containing A i.e. $B \backslash A \in \mathbb{I}$ and if $A \subseteq C$ and C is Borel then $B \backslash C \in \mathbb{I}$.
In such case we will write

$$
[A]_{\mathbb{I}}=B .
$$

Remark

Every c.c.c. σ-ideal with Borel base have the hole property.
Remark
N is completely \mathbb{I}-nonmeasurable in X iff

$$
[N]_{\mathbb{I}}=[X]_{\mathbb{I}} \text { and }[X \backslash N]_{\mathbb{I}}=[X]_{\mathbb{I}}
$$

\mathbb{I} denotes c.c.c. σ-ideal with Borel base of subsets of \mathbb{R}.

Definition

- We say that the cardinal number κ is quasi-measurable if there exists κ-additive ideal \mathcal{I} of subsets of κ such that the Boolean algebra $P(\kappa) / \mathcal{I}$ satisfies c.c.c.
- Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda<\kappa$ we have that $\lambda^{+}<\kappa$.

Every quasi-measurable cardinal is weakly inaccessible.

Definition

- We say that the cardinal number κ is quasi-measurable if there exists κ-additive ideal \mathcal{I} of subsets of κ such that the Boolean algebra $P(\kappa) / \mathcal{I}$ satisfies c.c.c.
- Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda<\kappa$ we have that $\lambda^{+}<\kappa$.

Fact
Every quasi-measurable cardinal is weakly inaccessible.

Definition

- We say that the cardinal number κ is quasi-measurable if there exists κ-additive ideal \mathcal{I} of subsets of κ such that the Boolean algebra $P(\kappa) / \mathcal{I}$ satisfies c.c.c.
- Cardinal κ is weakly inaccessible if κ is regular cardinal and for every cardinal $\lambda<\kappa$ we have that $\lambda^{+}<\kappa$.

Fact

Every quasi-measurable cardinal is weakly inaccessible.

Theorem (Ż 2007)
Assume that there is no quasi-measurable cardinal not greater than continuum.
Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then we can find a subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.

Theorem (Rałowski, Ż 2009)
Assume that continuum is the minimal quasi-measurable cardinal. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then we can find a subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}^{\prime}$ is completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.

Lemma (Ż 2007)

Let $\left\{A_{\xi}: \xi \in \omega_{1}\right\}$ be any family of subsets of \mathbb{R}.
Then we can find a family $\left\{I_{\alpha}\right\}_{\alpha \in \omega_{1}}$ of pairwise disjoint countable subsets of ω_{1} such that for $\alpha<\beta<\omega_{1}$ we have that $\left[\bigcup_{\xi \in I_{\alpha}} A_{\xi}\right]_{\mathbb{I}}=\left[\bigcup_{\xi \in I_{\beta}} A_{\xi}\right]_{\mathbb{I}}$.

Lemma (Ż 2007)

Assume that there is no quasi-measurable cardinal not greater than 2^{ω}.
Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then there exists a family $\left\{\mathcal{A}_{\alpha}\right\}_{\alpha \in \omega_{1}}$ satisfying the following conditions

$$
\begin{aligned}
& \text { 1. }\left(\forall \alpha<\omega_{1}\right)\left(\mathcal{A}_{\alpha} \subseteq \mathcal{A} \wedge \bigcup \mathcal{A}_{\alpha} \notin \mathbb{I}\right), \\
& \text { 2. }\left(\forall \alpha<\beta<\omega_{1}\right)\left(\mathcal{A}_{\alpha} \cap \mathcal{A}_{\beta}=\emptyset\right), \\
& \text { 3. }\left(\forall \alpha, \beta<\omega_{1}\right)\left(\left[\cup \mathcal{A}_{\alpha}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{\beta}\right]_{\mathbb{I}}\right) .
\end{aligned}
$$

Lemma (Ż 2007)
Let $\mathcal{A} \subseteq P(\mathbb{R})$ be any point-finite family.
Then there exists a subfamily $\mathcal{A}^{\prime} \subseteq \mathcal{A}$ such that $\left|\mathcal{A} \backslash \mathcal{A}^{\prime}\right| \leq \omega$ and
$(\forall B \in \operatorname{Borel})\left(\forall A \in \mathcal{A}^{\prime}\right)(B \cap \bigcup \mathcal{A} \notin \mathbb{I} \rightarrow \neg(B \cap \bigcup \mathcal{A} \subseteq B \cap A))$.

Theorem (\dot{Z})
Assume that there is no quasi-measurable cardinal not greater than 2^{ω}.
Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$.
Then there exists a collection of pairwise disjoint subfamilies
$\mathcal{A}_{\xi} \subseteq \mathcal{A}$ (for $\xi \in \omega_{1}$) such that $\bigcup \mathcal{A}_{\xi}$ is completely
\mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.

Theorem (\dot{Z})
Assume that 2^{ω} is the least quasi-measurable cardinal. Let $\mathcal{A} \subseteq \mathbb{I}$ be a point-finite family such that $\bigcup \mathcal{A} \notin \mathbb{I}$. Then there exists a collection of pairwise disjoint subfamilies $\mathcal{A}_{\xi} \subseteq \mathcal{A}$ (for $\xi \in \omega_{1}$) such that $\bigcup \mathcal{A}_{\xi}$ is completely
\mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}$.

Lemma (Ż)

Assume that there is no quasi-measurable cardinal smaller than continuum.
Assume that $\mathcal{A} \subseteq \mathbb{I}$ is point-finite family.
Let $\left(\mathcal{A}_{n}: n \in \omega\right)$ be a sequence of subsets of \mathcal{A}.
Then we can find a sequence ($\mathcal{B}_{n}: n \in \omega$) such that

1. $\mathcal{B}_{n} \cap \mathcal{B}_{m}=\emptyset$ for $n \neq m$,
2. $\mathcal{B}_{n} \subseteq \mathcal{A}_{n}$,
3. $\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{B}_{n}\right]_{\mathbb{I}}$.

Proof.

- We can find $\left(\mathcal{B}_{0}^{\alpha}\right)_{\alpha \in \omega_{1}}$ such that $\bigcup \mathcal{B}_{0}^{\alpha}$ is completely II-nonmeasurable in $\bigcup \mathcal{A}_{0}$
- There are at most countably many α 's such that
$\left[\cup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}^{\alpha}\right]_{\mathbb{I}} \neq\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.
- So, we can find \mathcal{B}_{0} such that

2. $\left[\cup \mathcal{B}_{0}\right]_{\mathbb{I}}=\left[\cup \mathcal{A}_{0}\right]_{\mathbb{I}}$

- Simple induction. Take for $n>0 \mathcal{A}_{n}^{\prime}=\mathcal{A}_{n} \backslash \mathcal{B}_{0}$.

By condition $3\left[\cup \mathcal{A}_{n}^{\prime}\right]_{\mathbb{I}}=\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}$.
So, every completely \mathbb{I}-nonmeasurable set in $\cup \mathcal{A}_{n}^{\prime}$ remains completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}_{n}$.

Proof.

- We can find $\left(\mathcal{B}_{0}^{\alpha}\right)_{\alpha \in \omega_{1}}$ such that $\bigcup \mathcal{B}_{0}^{\alpha}$ is completely I-nonmeasurable in $\bigcup \mathcal{A}_{0}$
- There are at most countably many α 's such that $\left[\bigcup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}^{\alpha}\right]_{\mathbb{I}} \neq\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.
- Simple induction. Take for $n>0 \mathcal{A}_{n}^{\prime}=\mathcal{A}_{n} \backslash \mathcal{B}_{0}$. By condition $3\left[\cup \mathcal{A}_{n}^{\prime}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$ So, every completely \mathbb{I}-nonmeasurable set in $\bigcup \mathcal{A}_{n}^{\prime}$ remains completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}_{n}$.

Proof.

- We can find $\left(\mathcal{B}_{0}^{\alpha}\right)_{\alpha \in \omega_{1}}$ such that $\bigcup \mathcal{B}_{0}^{\alpha}$ is completely II-nonmeasurable in $\bigcup \mathcal{A}_{0}$
- There are at most countably many α 's such that $\left[\bigcup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}^{\alpha}\right]_{\mathbb{I}} \neq\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.
- So, we can find \mathcal{B}_{0} such that

1. $\mathcal{B}_{0} \subseteq \mathcal{A}_{0}$,
2. $\left[\cup \mathcal{B}_{0}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{0}\right]_{\mathbb{I}}$,
3. $\left[\cup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}\right]_{\mathbb{I}}=\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.
\Rightarrow Simple induction. Take for $n>0 \mathcal{A}_{n}^{\prime}=\mathcal{A}_{n} \backslash \mathcal{B}_{0}$.
By condition $3\left[\bigcup \mathcal{A}_{n}^{\prime}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$
So, every completely \mathbb{I}-nonmeasurable set in $\cup \mathcal{A}_{n}^{\prime}$ remains completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}_{n}$.

Proof.

- We can find $\left(\mathcal{B}_{0}^{\alpha}\right)_{\alpha \in \omega_{1}}$ such that $\bigcup \mathcal{B}_{0}^{\alpha}$ is completely II-nonmeasurable in $\bigcup \mathcal{A}_{0}$
- There are at most countably many α 's such that $\left[\bigcup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}^{\alpha}\right]_{\mathbb{I}} \neq\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.
- So, we can find \mathcal{B}_{0} such that

1. $\mathcal{B}_{0} \subseteq \mathcal{A}_{0}$,
2. $\left[\bigcup \mathcal{B}_{0}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{0}\right]_{\mathbb{I}}$,
3. $\left[\cup \mathcal{A}_{n} \backslash \bigcup \mathcal{B}_{0}\right]_{\mathbb{I}}=\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}$ for every $n \in \omega$.

- Simple induction. Take for $n>0 \mathcal{A}_{n}^{\prime}=\mathcal{A}_{n} \backslash \mathcal{B}_{0}$. By condition $3\left[\bigcup \mathcal{A}_{n}^{\prime}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{A}_{n}\right]_{\mathbb{I}}$.
So, every completely \mathbb{I}-nonmeasurable set in $\bigcup \mathcal{A}_{n}^{\prime}$ remains completely \mathbb{I}-nonmeasurable in $\bigcup \mathcal{A}_{n}$.

Theorem (\dot{Z})
Assume that there is no quasi-measurable cardinal smaller than continuum.
Assume that $\mathcal{A} \subseteq \mathbb{I}$ is point-finite family.
Let $\left(\mathcal{A}_{n}: n \in \omega\right)$ be a sequence of subsets of \mathcal{A}.
Then we can find a sequence $\left(\mathcal{B}_{n}^{\xi}: n \in \omega, \xi \in \omega_{1}\right)$ such that

1. $\mathcal{B}_{n}^{\xi} \cap \mathcal{B}_{m}^{\zeta}=\emptyset$ for $(n, \xi) \neq(m, \zeta)$,
2. $\mathcal{B}_{n}^{\xi} \subseteq \mathcal{A}_{n}$,
3. $\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{B}_{n}^{\xi}\right]_{\mathbb{I}}$.

Proof.

- Find a collection $\left\{\mathcal{B}_{n}: n \in \omega\right\}$ such that

1. $\mathcal{B}_{n} \cap \mathcal{B}_{m}=\emptyset$ for $n \neq m$,
2. $\mathcal{B}_{n} \subseteq \mathcal{A}_{n}$,
3. $\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{B}_{n}\right]_{\mathbb{I}}$.

- for each $n \in \omega$ we can find $\left(\mathcal{B}_{n}^{\alpha}: \alpha \in \omega_{1}\right)$ such that

1. $\mathcal{B}_{n}^{\alpha} \subseteq \mathcal{B}_{n}$,
2. $\mathcal{B}_{n}^{\alpha} \cap \mathcal{B}_{n}^{\beta}=\emptyset$ for $\alpha \neq \beta$,
3. $\bigcup \mathcal{B}_{n}^{\sim}$ is completely \mathbb{I}-nonmeasrable in $\bigcup \mathcal{B}_{n}$.
\Rightarrow The collection ($\mathcal{B}_{n}^{\alpha}: n \in \omega, \alpha \in \omega_{1}$) fulfilles desired conditions.

Proof.

- Find a collection $\left\{\mathcal{B}_{n}: n \in \omega\right\}$ such that

1. $\mathcal{B}_{n} \cap \mathcal{B}_{m}=\emptyset$ for $n \neq m$,
2. $\mathcal{B}_{n} \subseteq \mathcal{A}_{n}$,
3. $\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{B}_{n}\right]_{\mathbb{I}}$.

- for each $n \in \omega$ we can find ($\mathcal{B}_{n}^{\alpha}: \alpha \in \omega_{1}$) such that

1. $\mathcal{B}_{n}^{\alpha} \subseteq \mathcal{B}_{n}$,
2. $\mathcal{B}_{n}^{\alpha} \cap \mathcal{B}_{n}^{\beta}=\emptyset$ for $\alpha \neq \beta$,
3. $\bigcup \mathcal{B}_{n}^{\alpha}$ is completely \mathbb{I}-nonmeasrable in $\bigcup \mathcal{B}_{n}$.
\Rightarrow The collection ($\mathcal{B}_{n}^{\alpha}: n \in \omega, \alpha \in \omega_{1}$) fulfilles desired conditions.

Proof.

- Find a collection $\left\{\mathcal{B}_{n}: n \in \omega\right\}$ such that

1. $\mathcal{B}_{n} \cap \mathcal{B}_{m}=\emptyset$ for $n \neq m$,
2. $\mathcal{B}_{n} \subseteq \mathcal{A}_{n}$,
3. $\left[\cup \mathcal{A}_{n}\right]_{\mathbb{I}}=\left[\bigcup \mathcal{B}_{n}\right]_{\mathbb{I}}$.

- for each $n \in \omega$ we can find ($\mathcal{B}_{n}^{\alpha}: \alpha \in \omega_{1}$) such that

1. $\mathcal{B}_{n}^{\alpha} \subseteq \mathcal{B}_{n}$,
2. $\mathcal{B}_{n}^{\alpha} \cap \mathcal{B}_{n}^{\beta}=\emptyset$ for $\alpha \neq \beta$,
3. $\cup \mathcal{B}_{n}^{\alpha}$ is completely \mathbb{I}-nonmeasrable in $\bigcup \mathcal{B}_{n}$.

- The collection ($\mathcal{B}_{n}^{\alpha}: n \in \omega, \alpha \in \omega_{1}$) fulfilles desired conditions.

葍 J．Brzuchowski，J．Cichoń，E．Grzegorek，C． Ryll－Nardzewski，On the existence of nonmeasurable unions，Bull．Polish Acad．Sci．Math． 27 （1979），447－448．

围 J．Cichoń，M．Morayne，R．RaŁowski，C． Ryll－Nardzewski，S．Żeberski，On nonmeasurable unions，Topology and its Applications 154 （2007），pp．884－893，

囯 M．Gitik，S．Shelah，More on real－valued measurable cardinals and forcings with ideals，Israel Journal of Mathematics 124 （1），（2001），pp．221－242，
國 R．RaŁOWski，S．ŻEBERSKI，Completely nonmeasurable union，preprint．
圊 S．ŻEBERSKI，On completely nonmeasurable unions， Mathematical Logic Quarterly 53 （1）（2007），pp．38－42．

