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Infinite objects in constructive mathematics

Introduction

This talk will be about Hilbert’s program and the connections between

reasoning and computation

in mathematics

The situation is especially interesting in algebra
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Some history

The word algorithm comes from the name of the author, Al-Khwarizmi of the
treatise Al-jabr wa-all-Muqabilah (around 825)

The word algebra comes from the title of the book!

Until 1800 works in algebra consist mostly of computations and clever algebraic
manipulations (like in computer algebra)

Example: elimination theory (Bezout, Poisson), Lagrange
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Some history

The situation changes with Gauss, Abel, Galois

Concept of irreducible polynomial in Gauss’ work, which plays a fundamental
role for Abel and Galois

Construction of the splitting field of a polynomial, cf. H. Edwards

Essays in constructive mathematics

Rational functions of given quantities which will evoluate later to the notion
of field
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Some history

All the arguments that prove the existence of an object can still be interpreted
algorithmically

Galois insists on the ideal character of these computations

“If now, you give me an equation that you have in any way you like and you
want to know whether it is or not solvable by radicals, I have nothing to do but
to indicate to you the way to reply to the question, but without to obliging either
myself or anyone else to do so. In other word, the calculations are impracticable.”

Same for Kronecker (cf. H. Edwards). The connection with computations is
however essential: we have to predict some informations about the results of the
computation (without actually doing them)
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Some history

The connection between reasoning and algorithms became then less and less
clear, typically through the different versions that Dedekind gave to his theory
of ideals (cf. J. Avigad Methodology and Metaphysics in the Development of
Dedekind’s Theory of Ideals)

Cauchy, Puiseux, Riemann: introduction of complex analysis in the theory of
algebraic functions (treated mainly as pure algebra by Abel, Galois, Kronecker)

The connection with computation, maybe not feasible but which was always
possible in theory, is now lost, because of the use of the law of excluded-middle

Hilbert’s Basis Theorem: all ideals of K[X1, . . . , Xn] are of finite type
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Reasoning and computations

Example: any polynomial P of degree > 1 in K[X] has an irreducible factor,
given a field K

If P is not irreducible, P = QR with 1 6 d(Q) < d(R) and we can find an
irreducible factor of Q by induction. This looks like an algorithm but even if K is
concretely given and computable it can be shown that there is no algorithm for
finding an irreducible factor in general

The property: “to be irreducible” is not decidable in general (in some special
cases it is), even for X2 + 1. (Simply take Q[αi] where we don’t know whether
α = 0 or α = 1.)
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Existence in mathematics

If we prove in commutative algebra the existence of an object, this proof may
not give a way to compute this object. What is the meaning of mathematical
existence then? Hilbert thought deeply about this new situation from the 1890s
on, as one can see from his Mathematical Notebooks

New meaning of mathematical existence (1890s; translation, S. Hayashi)

“To exist means that the conditions defining the concept do not contradict to
themselves”

Replace “semantics” by “syntax”

7



Infinite objects in constructive mathematics

Hilbert’s Program

Introduction/elimination of ideal elements

Hilbert’s Program: if we prove using ideal methods a concrete statement, one
can always eliminate these ideal elements and obtain a purely elementary proof

Ideal objects (non constructive): prime ideals, maximal ideals, valuation rings,
local-global principle, non constructive reasoning, . . .

These ideal objects are suggestive means for proofs with no real existence
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Hilbert’s Program

Any non trivial ring has a maximal ideal

Let R be a ring, if a linear map R2 → R3 is surjective then R is trivial (we
have 1 = 0 in R)

This can be formulated as the fact that we can derive 1 = 0 in an equational
theory

Proof: if m is a maximal ideal of R and k = R/m then we have a surjective
map k2 → k3 contradiction

By Birkhoff’s completness theorem for equational logic, there should be
a purely equational derivation. Is it contained (hidden) in this non effective
argument?
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Hilbert’s Program

Serre’s problem (Quillen-Suslin’s Theorem)

Theorem: Any finitely generated projective module on a polynomial ring is
free

Theorem: (concrete formulation) An idempotent matrix over a polynomial

ring is similar to a canonical projection matrix of the form Ir,n =
(

Ir 0
0 0

)
Given such a matrix M satisfying M2 = In we can find an invertible matrix

P such that PMP−1 = Ir,n

The proof by Suslin uses a maximal ideal. Does this proof indicates a way to
compute the matrix P given M?
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Hilbert’s Program

Examples: Dirichlet Theorem proved with analysis, or

Theorem: (Krivine, 1964) If P ∈ Q[x1, . . . , xk] is > 0 on [0, 1]n then it can
be written as a polynomial in xi, 1− xi with rational positive coefficients

This is also proved with the Axiom of Choice

It is not true if P is only > 0: take (2x− 1)2

(but it works for (2x− 1)2 + ε if ε > 0)

Krivine provides two different proofs
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Formal topology

The method we use for representing Hilbert’s idea of introduction and
elimination of ideal objects comes from the theory of locales also known as
formal or point-free topology

This presents a topological space, not as a set of points, but as a logical
theory describing its lattice of open sets

Reverse of the traditional conceptual order in topology, where open sets are
thought of as primitive symbolic objects (observable) and points are infinite ideal
objects, defined as particular filters of neighborhoods

Typically, the existence of points is proved using Zorn’s Lemma
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Elimination of points

Hilbert’s ideal objects are represented by points of a formal space

The introduction of a point of a formal space corresponds to working in the
sheaf model over this space

The elimination of this point is achieved by Beth-Kripke-Joyal explanation of
the logic of this sheaf model

Some roots of this approach involve Brouwer’s notion of choice sequences
and an analysis of universal quantification over these objects in constructive
mathematics
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Elimination of points

This involves replacing an ideal object by a syntactical theory that describes
this object

“Phenomenological” description of infinite objects (only using “observable”
properties)
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Point-Free Topology

An early point-free description of a space can be found in the work of Dedekind
and Weber

Theorie des algebraischen Funktionen einer Veründerlichen , J. de Crelle t.
XCII (1882) 181-290

aiming at giving a rigorous (and almost algebraic) presentation of Riemann
surfaces

(An early application of this method is due to N. de Bruijn 1967 who could
eliminate in this way the use of the Axiom of Choice in the context of Banach
algebras analysing the proof of Wiener’s Theorem on inverse of Fourier series.)
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Elimination of points

We can apply this method to proofs of purely existential statements in algebra
which uses ideal objects (prime ideals, maximal ideals, valuation rings, . . . )

We get elementary statements (essentially first-order) and constructive
proofs,which are extracted from the non effective proofs

This can be seen as a partial realization of Hilbert’s Program in commutative
algebra
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Reasoning and computations

These proofs, being constructive can be considered as algorithms that compute
a witness of these existential statements

Question: has the use of ideal/non effective arguments in mathematics some
computational relevance??

Ideal methods seem to correspond to clever algorithmic ideas, reminiscent of
the technique of lazy evaluation in functional programming (we cannot compute
completely an infinite object but we can use partial finite amount of information
about this object during a computation)
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Reasoning and computations

Some methods to analyse the computational meaning of non effective
reasoning

-negative translation (Kolmogorov, Gödel, Gentzen)

-Dialectica interpretation (Gödel, + monotone interpretation, cf. the tutorial
of U. Kolhenbach)

-formal topology/elimination mappings (this method is suggested in Troelstra
Choice sequences, 6.12, with an application to Riemann’s permutation theorem)
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Logic

Gödel’s incompleteness theorem shows that Hilbert’s Program does not work
for arithmetic (Dirichlet’s Theorem on arithmetic progressions of primes), even
for purely universal statement

Gödel’s completeness theorem indicates that Hilbert’s Program should work
for a large part of algebra, where statements are first-order

However Gödel’s proof is non constructive and does not provide a way to
eliminate ideal elements in proofs of first-order statement

(Gödel’s constructible sets give a general method to eliminate the use of the
Axiom of Choice)
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Zariski spectrum

R commutative ring

The prime filters (classically complement of prime ideals) may be very difficult
to build (prime factorisation), but it is simple to describe their logical theory of
“observable” properties

Joyal’s definition: free (bounded) distributive lattice generators D(a), thought
of as a pure symbols, and relations

D(0) = 0, D(1) = 1, D(ab) = D(a) ∧D(b), D(a + b) 6 D(a) ∨D(b)

We write D(a1, . . . , an) for D(a1) ∨ · · · ∨D(an)
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Zariski spectrum

This definition is purely algebraic: we manipulate only rings and lattices,
R 7−→ Zar(R) is a functorial construction

We have D(an) = D(a), n > 1 and so D(a) = 0 if a is nilpotent

We have for instance D(a, b) = D(a + b, ab) and hence D(a, b) = D(a + b) if
D(ab) = 0

Question: how many elements l are needed to write an arbitrary element
D(a1, . . . , al) of Zar R?
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Nullstellensatz

We clearly have D(a2) = D(a) and so D(a) 6 D(b1, . . . , bm) whenever a
belongs to the radical of the ideal generated by b1, . . . , bm

The formal Nullstellensatz states that conversely if D(a) 6 D(b1, . . . , bm)
then a belongs to the radical of the ideal generated by b1, . . . , bm

This can be seen as a cut-elimination theorem
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Nullstellensatz

This follows from the following explicit description of the Zariski lattice: define
D(a1, . . . , an) to be the radical ideal generated by a1, . . . , an

It is always a distributive lattice; the product is also the intersection

(In general the lattice of finitely generated ideals of a ring is not distributive:
take in k[X, Y ] the ideals 〈X〉, 〈Y 〉 and 〈X + Y 〉

A ring is arithmetical iff its lattice of ideals is distributive)
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Zariski spectrum, application

D(a) = 0 iff a is nilpotent (we have an = 0 for some n)

This corresponds to the fact that the intersection of all prime ideals of a ring
is the ideal of nilpotent elements

D(a1, . . . , an) = 1 iff a1, . . . , an is unimodular that is 〈a1, . . . , an〉 = 1
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Zariski spectrum, application

Gauss-Joyal identity

D(a1, . . . , an) ∧D(b1, . . . , bm) = D(c1, . . . , cl)

if (ΣaiX
i)(ΣbjX

j) = ΣckX
k

Application: the product of primitive polynomials (ideal of coefficient is 1) if
primitive

This can be interpreted as using a generic prime filter (in the sheaf model over
the Zariski spectrum)

We force the existence of such a prime filter
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Krull dimension

We think of a distributive lattice as a formal space (Stone)

The points of the space are the prime filters; the elements of the distributive
lattice can be thought of as symbols for the compact open subsets of the space

In general non Haussdorf space: we can have non trivial chains of prime filters
α0 ⊂ · · · ⊂ αn (chain of length n)

Krull dimension of a distributive lattice/commutative ring: maximal length of
such chains
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Krull dimension

Here is a purely “phenomenological” approach

Given a bounded distributive lattice L, define the boundary ideal Ba of an
element a of L to be the ideal generated by a and the ideal

a⊥ = {b ∈ L | a ∧ b = 0}

In term of points, the quotient L/Ba describes the topological boundary of the
compact open set a
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Krull dimension

We define inductively Kdim L < 0 iff L is trivial and Kdim L < n + 1 iff
Kdim L/Ba < n for all a in L

Geometrically, the dimension of the space is < n + 1 iff the dimension of each
boundary of any compact open subspace is < n (cf. Menger-Uryshon dimension)
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Krull dimension

In this way Kdim L = 0 iff any element a has a complement i.e. there exists
b such that a ∨ b = 1 and a ∧ b = 0 iff L is a Boolean algebra

In general Kdim L < n iff any sequence a1, . . . , an has a “complement”
b1, . . . , bn such that

1 = a1 ∨ b1

a1 ∧ b1 6 a2 ∨ b2

. . .
an−1 ∧ bn−1 6 an ∨ bn

an ∧ bn = 0
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Krull dimension

Intermediate logics between classical (Boolean algebra) and intuitionistic logic
(Heyting algebra)

dim 0: p ∨ ¬p = 1

dim 1: p ∨ (p → (q ∨ ¬q)) = 1

. . .

In term of Kripke models: the height of the tree is bounded

These logics are decidable (Ono, Smorynski)

Finitely generated algebras are finite (cf. recent work of Katarzyna
S lomczyǹska)
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Krull dimension of a ring

We define Kdim R < n to mean that for any a1, . . . , an in R there exists
b1, . . . , bn in R such that

1 = D(a1, b1)
D(a1b1) 6 D(a2, b2)

. . .
D(an−1bn−1) 6 D(an, bn)
D(anbn) = 0

Theorem: Kdim R < n iff Kdim (Zar R) < n
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Krull dimension

Theorem: We have Kdim k[X1, . . . , Xn−1] < n

This follows from the fact that n polynomials in k[X1, . . . , Xn−1] are
algebraically dependent
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Kronecker’s Theorem

Theorem: If Kdim R < n then any element of Zar R can be written on the
form D(a1, . . . , al) with l 6 n

For instance D(a, c) = D(a + bc) if D(ab) = 0 and D(a, b) = 1

In general

D(a1, . . . , an, c) = D(a1 + cb1, . . . , an + cbn)

where b1, . . . , bn is a complement of a1, . . . , an
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Kronecker’s Theorem

This gives an algorithm for Kronecker’s Theorem: given m polynomials
Q1, . . . , Qm in Q[X1, . . . , Xn−1] find n polynomials P1, . . . , Pn such that the two
lists have the same common complex zeros

(More precisely we find P1, . . . , Pn in the ideal generated by Q1, . . . , Qm and
Q1, . . . , Qm in the radical of the ideal generated by P1, . . . , Pl)
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Kronecker’s Theorem

Geometrically this means that an algebraic variety in Cn−1 is the intersection
of n hypersurfaces (the bound is not optimal; n− 1 is enough)

Section 10 of Grundzüge einer arithmetischen Theorie der algebraischen
Grössen
J. reine angew. Math. 92, 1-123 (1882)

This result was generalized from polynomial ring to the case of Noetherian
rings and Krull dimension by van der Waerden 1941

It is usually presented only in the case with the additional hypothesis that the
ring is Noetherian, for instance in the text book of Kunz, Eisenbud, Ischebeck-Rao,
. . .

35



Infinite objects in constructive mathematics

Kronecker’s Theorem

This concrete proof/algorithm, is extracted from R. Heitmann “Generating
non-Noetherian modules efficiently” Michigan Math. J. 31 (1984), 167-180

Though seeemingly unfeasible (use of prime ideals, topological arguments on
the Zariski spectrum) this paper contains implicitely a clever and simple algorithm
which can be instantiated for polynomial rings
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Krull dimension

The same method can be used to extract an algorithm for Forster’s Theorem
(1964), which generalizes Serre’s splitting-off Theorem (1957)

Theorem: If Kdim R < n and M is a rectangular matrix such that ∆n(M) =
1 then we can find an unimodular linear combination of the column of M

Here ∆n(M) = ∨νD(ν) where ν ranges over n× n minor of M
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Forster(-Swan)’s Theorem

We get a first-order (constructive) proof.

It can be interpreted as an algorithm which produces the unimodular
combination.

(The motivation for this Theorem comes from differential geometry

If we have a vector bundle over a space of dimension d and all the fibers are of
dimension r then we can find d + r generators for the module of global sections)
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Serre’s Splitting-Off Theorem

If we specialise to the case where M is an idempotent matrix we get Serre’s
Splitting-Off Theorem

In this case, the geometric intuition is that we have a vector bundle over
a space of dimension < n and each fibers having a dimension > n, and the
unimodular combination corresponds to a non vanishing section
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Point-free formulation

In this example of Krull dimension and finding generators for modules the
search for a point-free formulation does simplify the statements and the proofs

The proofs are elementary and constructive

One can in this way find a purely first-order formulation of one open question
in Heitman’s 1984 paper (and then solves this question)
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Valuation rings

We can similarly give a point-free formulation of the notion of valuation ring

If R is a domain of fied of fraction K a valuation ring is a subring V of K
containing R such that s or s−1 is in V whenever s 6= 0 in K

We have s/(1− s) in V or (1− s)/s in V , hence 1/s in V or 1/(1− s) in V

A valuation ring is a local ring: if r is in V either r or 1− r is invertible in V .
Let mV be the maximal ideal of V

V 7−→ mV ∩R is the center map
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Space of valuations

By analogy with Joyal’s definition of the Zariski spectrum of a ring we define
the formal space Val(R) to be the distributive lattice generated by the symbols
V (s) for s in K with the relations

1 = V (s) ∨ V (1/s), V (s1) ∧ V (s2) 6 V (s1 + s2) ∧ V (s1s2)

and, for r in R
1 = V (r)
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Space of valuations

We write V (s1, . . . , sn) for V (s1) ∨ · · · ∨ V (sn)

In general we do not have V (s1) ∧ V (s2) = V (s1s2)

We have V (s) ∧ V (1/s) = V (s + 1/s)
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Zariski spectrum and space of valuations

We have a lattice map

Zar(R) → Val(R), D(a) 7−→ V (1/a) (a 6= 0)

This is the center map, built here only using the initiatility condition

Theorem: The point-free center map is injective
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Zariski spectrum and space of valuations

The (constructive) proof of this fact requires cut-elimination

Intuitively: the function f is 6= 0 iff 1/f is finite

This can be seen as a conservativity result between two logical theories and it
corresponds to the following extension Theorem

Theorem: (Chevalley) For any prime ideal p of R there exists a valuation
ring V such that mV ∩R = p
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Elimination of Noetherian hypotheses

In most examples analysed so far in algebra, Noetherian hypotheses can be
eliminated and replaced by pure first-order formulation (for instance, Kronecker’s
or Forster’s Theorem).

Regular Element Theorem: if R Noetherian and if I = 〈a1, . . . , an〉 is regular
(i.e. Ix = 0 implies x = 0) then there exists u ∈ I such that u is regular (i.e.
ux = 0 → x = 0)
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Abstract functional analysis

The same method can be used to analyse some non effective results in
functional analysis

Hahn-Banach theorem (Mulvey): the extension theorem becomes a
conservativity result between theories

Gelfand representation theorem: we get an alternative constructive approach
to the representation theorem

Point-free analysis of Krivine’s paper Anneaux préordonnés Journal d’Analyse
Math., 12, p. 307-326 (1964)
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Minimal and maximal primes

Some arguments in algebra using a generic maximal/minimal prime ideal

-Suslin’s proof of Serre’s problem: the argument has been analysed by I.
Yengui who could extract an algorithm from this proof

-Traverso-Swan’s characterisation of seminormal rings

R is seminormal iff b2 = c3 → ∃a. b = a3 ∧ c = a2 iff

the canonical map Pic R → Pic R[X] is an isomorphism

(application: if R is seminormal then so is R[X]) work of Th. C., H. Lombardi,
C. Quitté, S. Baroumi

-Peskine’s proof of Zariski’s Main Theorem
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What next?

H. Edwards in several works

Essays in Constructive Mathematics, Springer, New York, 2005

Divisor Theory, Birkhauser, Boston, 1995

A Normal Form for Elliptic Curves, Bulletin of the AMS, vol. 44 (2007)
393-422

has shown how to give a constructive treatment of algebraic function theory
following Kronecker. I believe that this treatment can be simplified and made
closer to the non effective presentation using a point-free presentation

Goal: purely algebraic presentation of Abel’s work on algebraic functions
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What next?

Coste M., Lombardi H., Roy M.F.
Dynamical method in algebra: Effective Nullstellensätze J.P.A.A. 155 (2001)

contains a constructive presentation of some quantifier elimination results,
using a method inspired from model theory and close to point-free presentations

Connections with the “dynamical method” D5 used in computer algebra

This should be extended to the case of differential closed fields and connected
to the early work of Drach

Sur le problème logique de l’intégration des équations différentielles. Annales
de la faculté des sciences de Toulouse, Sér. 2, 10 (1908), p. 393-472
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What next?

Constructive model theory?

Decidability of the theory of algebraically closed fields of a given characteristic
by the fact that any two fields of the same uncoutable cardinality are isomorphic.
What is the computational meaning of this proof?

Krivine’s thesis, part 2 (available at his home page): use of Krein-Milman
which does not seem direct to interpret constructively
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“Constructive Krull dimension of lattices.” Rev. Acad. Cienc. Zaragoza (2) 37
(1982), 5–9.

L. Español
“Dimension of Boolean valued lattices and rings.” J. Pure Appl. Algebra 42
(1986), no. 3, 223–236.

54



Infinite objects in constructive mathematics

Some references
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