Tame ordered structures

Antongiulio Fornasiero antongiulio.fornasiero@googlemail.com

University of Münster

Logic Colloquium 2009

Introduction

- A definably complete (DC) structure is a linearly ordered structure K, such that every definable subset of K has a supremum in K ∪ {±∞}.
- For example, all expansions of \mathbb{R} and all o-minimal structure are DC.
- All structures in this talk will be assumed to be DC expansions of ordered fields.

Introduction

- A definably complete (DC) structure is a linearly ordered structure K, such that every definable subset of K has a supremum in K ∪ {±∞}.
- For example, all expansions of \mathbb{R} and all o-minimal structure are DC.
- All structures in this talk will be assumed to be DC expansions of ordered fields.
- We do not have yet a precise definition of "tame structures". We will describe some classes of tame structures (which are DC expansion of fields!) containing the class of o-minimal structures.
- Tame non-DC ordered structure (e.g., weakly o-minimal structures) are outside the scope of this talk.

Contents

- D-minimal structures
- Structures satisfying Uniform Finiteness
 - 4 Structures satisfying Pseudo-Finiteness
 - Baire structures
- 6 Dimension in d-minimal structures

Locally o-minimal structures

Definition

 \mathbb{K} is locally o-minimal if it is o-minimal "around every point". That is, for every *X* definable subset of \mathbb{K} and every $a \in \mathbb{K}$, there exists $0 < \varepsilon \in \mathbb{K}$, such that $(a, a + \varepsilon)$ is either disjoint form *X*, or contained in *X*.

Example

Ultraproducts of o-minimal structures.

Remark

If \mathbb{K} expands \mathbb{R} , then \mathbb{K} is locally o-minimal iff it is o-minimal. The same remains true if we only ask that \mathbb{K} is Archimedean.

Properties of locally o-minimal structures

Many facts from the theory of o-minimal structures remain true for locally o-minimal ones.

Monotonicity theorem Given a definable function $f : \mathbb{K} \to \mathbb{K}$, there exists a pseudo-finite set *I* such that, on each intervals of $K \setminus I$, *f* is continuous and either constant or strictly monotone. Same with C^{ρ} instead of continuous.

Constructibility Every definable subset of \mathbb{K}^n is constructible (finite Boolean combination of definable open sets).

Definable Choice K has definable Skolem functions and elimination of imaginaries

Growth dichotomy \mathbb{K} is either power-bounded, or defines an exponential function.

Properties no longer true for locally o-minimal structures

Exchange principle The algebraic closure does not satisfy the exchange principle for the algebraic closure.

Theorem (A. Dolich)

If a locally o-minimal theory T satisfies the exchange principle, then T is o-minimal.

Rosiness A locally o-minimal non o-minimal theory is not rosy.

NIP There exists an ultraproduct of o-minimal structures (and hence locally o-minimal) which satisfies the Independence Property.

D-minimal structures

Definition (C. Miller)

 \mathbb{K} is d-minimal if, for every \mathbb{K}' elementary extension of \mathbb{K} , and every X definable subset of \mathbb{K}' , X is the union of an open set and finitely many discrete sets.

Example (van den Dries)

 $(\mathbb{R}, +, \cdot, <, 2^{\mathbb{Z}})$ is d-minimal, where $2^{\mathbb{Z}}$ is a predicate denoting the set of real integer powers of 2.

Properties of d-minimal structures

Many of the properties of locally minimal structures remain true for d-minimal ones. Let \mathbb{K} be a d-minimal structure.

Monotonicity theorem Given a definable function $f : \mathbb{K} \to \mathbb{K}$, there exists a definable set *I* which is closed and with empty interior, and such that, on each intervals of $K \setminus I$, *f* is continuous and either constant or strictly monotone. Same with C^p instead of continuous.

Constructibility Every definable subset of \mathbb{K}^n is constructible.

Definable Choice K has definable Skolem functions and elimination of imaginaries

(Un)rosiness If \mathbb{K} is not o-minimal, then it is not rosy.

Open core and dense pairs

Definition

The open core of \mathbb{K} is the reduct of \mathbb{K} generated by all open definable subsets of \mathbb{K} .

Definition

Given a theory T (expanding RCF), let T^d is the theory dense pairs of models of T: that is, the theory of pairs (A, B), such that

•
$$A \prec B \models T$$

③ A is dense in B: ∀b < b' ∈ B ∃a ∈ A (b < a < b').</p>

Structure satisfying Uniform Finiteness Definition

 $\mathbb K$ satisfies Uniform Finiteness (UF) if it eliminates the quantifier "there exist infinitely many".

Theorem (Dolich, Miller, Steinhorn)

K satisfies UF iff its open core is o-minimal.

Theorem (Dries, DMS)

If T is an o-minimal theory, then T^d is complete, it satisfies DC and UF, and the open core of T^d is T.

Theorem (F.)

If T is a d-minimal theory, then T^d is complete. The Cauchy completion $\tilde{\mathbb{K}}$ of a d-minimal structure \mathbb{K} has a unique structure such that $\mathbb{K} \leq \tilde{\mathbb{K}}$; therefore, T^d is also consistent.

Pseudo-finite sets

Definition

 $X \subseteq \mathbb{K}$ is pseudo-finite if it is definable, discrete, closed, and bounded.

Remark

If \mathbb{K} is an expansion of the real line, then any pseudo-finite subset of \mathbb{K}^n is finite.

Lemma

If $X \subset \mathbb{K}^n$ is pseudo-finite and $f : \mathbb{K}^n \to \mathbb{K}^m$ is definable, then f(X) is also pseudo-finite.

Pseudo-finite sets, continued

Example

If \mathbb{R} is a non-standard model of analysis, and $X \subset \mathbb{R}$ is definable, then X is pseudo-finite iff its cardinality is a (standard or not) natural number.

Remark

𝕂 satisfies UF iff every pseudo-finite subset is finite.

Lemma

 $\mathbb K$ satisfies Uniform Finiteness (UF) iff every definable discrete subset of $\mathbb K$ is finite.

Definition

 \mathbb{K} satisfies Pseudo-Finiteness (Ψ F) iff every definable discrete subset of \mathbb{K} is pseudo-finite (that is, closed and bounded).

Lemma

- If \mathbb{K} satisfies UF, then it satisfies ΨF .
- ΨF is an elementary property: in particular, ultraproducts of structures with ΨF do satisfy ΨF.

Definition

 \mathbb{K} satisfies Pseudo-Finiteness (Ψ F) iff every definable discrete subset of \mathbb{K} is pseudo-finite (that is, closed and bounded).

Lemma

- If \mathbb{K} satisfies UF, then it satisfies ΨF .
- ΨF is an elementary property: in particular, ultraproducts of structures with ΨF do satisfy ΨF.

Theorem (DMS)

 ${\mathbb K}$ satisfies UF iff its open core is o-minimal.

Definition

 \mathbb{K} satisfies Pseudo-Finiteness (Ψ F) iff every definable discrete subset of \mathbb{K} is pseudo-finite (that is, closed and bounded).

Lemma

- If \mathbb{K} satisfies UF, then it satisfies ΨF .
- ΨF is an elementary property: in particular, ultraproducts of structures with ΨF do satisfy ΨF.

Theorem (F.)

 \mathbb{K} satisfies ΨF iff its open core is locally o-minimal.

A. Fornasiero (University of Münster)

Baire structures

Definition

A subset *X* of \mathbb{K}^n is nowhere dense if the closure of *X* has empty interior: $\dot{\overline{X}} = \emptyset$.

 \mathbb{K} is definably Baire if it is not the union of an increasing definable family of nowhere dense subsets.

Definition

 $X \subseteq \mathbb{K}^n$ is definably meager if X is the union of an increasing definable family of nowhere dense subsets.

Remark

 \mathbb{K} is (definably) Baire iff it is not definably meager. Being Baire is a a first-order property, and hence preserved under elementary equivalence and ultraproducts.

Baire structures, continued

Examples

- Every expansion of \mathbb{R} is Baire.
- Every d-minimal structure is Baire.
- Every structure satisfying ΨF is Baire.

Lemma

If \mathbb{K} defines a discrete subring N, then \mathbb{K} is Baire.

Proof.

N is a model of first-order Peano Axioms; hence, one can simulate in N a proof of the "classical" Baire Category Theorem.

Conjecture

Every DC expansion of an ordered field is Baire.

Dimension

Definition

Let $X \subseteq \mathbb{K}^n$. The dimension of X is dim(X), the largest integer d such that there exists a coordinate space L of dimension d, such that $\Pi_L(X)$ has non-empty interior, where Π_L is the projection from \mathbb{K}^n to L.

Remark

- dim is monotone;
- if $X \subseteq \mathbb{K}^n$, then dim $(X) \leq n$.

It is not true in general that $\dim(X \cup Y) = \max(\dim(X), \dim(Y))$.

Dimension in d-minimal structures

Let \mathbb{K} be d-minimal, and X and Y be definable sets.

Lemma (1)

- $\dim(X \cup Y) = \max(\dim(X), \dim(Y));$
- if $X \subseteq \mathbb{K}^{n+m}$, $Y := \prod_{n=1}^{n+m}(X)$, dim(Y) = d, and dim $(X_a) = k$ for every $a \in Y$, then dim(X) = d + k.

Lemma

• dim
$$(\overline{X})$$
 = dim X;

- Sard's Lemma: if f : Kⁿ → K^m is C¹ function definable in K, then the set of critical points of f has empty interior.
- If moreover \mathbb{K} is locally o-minimal, then dim $(\partial X) < \dim(X)$.

Dimension functions

Other kind of structures have well-behaved notions of dimension too. Definition

A dimension function (on some structure \mathbb{K}) is a function dim from definable sets into natural numbers, such that

- dim is monotone;
- the dimension of any singleton is 0;
- $(im(\mathbb{K}) = 1;$
- dim is additive;

● for every integer *d* and definable set $X \subseteq \mathbb{K}^{n+m}$,

- a. the set $\{a \in \mathbb{K}^n : \dim(X_a) = d\}$ is definable;
- b. let $Y := \prod_{n=1}^{n+m} (X)$; if dim(Y) = d and dim $(X_a) = k$ for every $a \in Y$, then dim(X) = d + k.