Logic Colloquium '09: Sofia

Four Notions of Degree Spectra

Valentina Harizanov Department of Mathematics George Washington University harizanv@gwu.edu http://home.gwu.edu/~harizanv/

Computable Models

Consider *countable* structures \mathcal{A} for *computable* languages L.

- Atomic diagram of \mathcal{A} , $D_0(\mathcal{A})$, is the set of all quantifier-free sentences of L_A true in \mathcal{A}_A .
- Turing degree of \mathcal{A} is the Turing degree of $D_0(\mathcal{A})$. \mathcal{A} is computable (recursive) if its Turing degree is 0.
- $D_0(\mathcal{A})$ may be of much lower Turing degree than $Th(\mathcal{A})$. \mathcal{N} , the standard model of arithmetic, is computable. *True Arithmetic*, $TA = Th(\mathcal{N})$, is of Turing degree $\mathbf{0}^{(\omega)}$.

 \emptyset' is the halting set and 0' is its Turing degree.

- (Tennenbaum, 1959) If \mathcal{A} is a nonstandard model of *Peano Arithmetic* (*PA*), then \mathcal{A} is not computable.
- (Knight, 2001) If A is a nonstandard model of PA, then there exists B ≅ A such that D₀(B) <_T D₀(A).
- ≤_T Turing reducibility
 A set D and its Turing degree d are called *low* if d'= 0'.
- (Harrington, Knight, 1995) There is a nonstandard model \mathcal{M} of PA such that $D_0(\mathcal{M})$ is *low* and $Th(\mathcal{M}) \equiv_T \emptyset^{(\omega)}$.

- Let $D^e(\mathcal{A})$ be the elementary diagram of \mathcal{A} .
- A structure A is automorphically trivial if there is a sequence
 c ∈ A^{<ω} such that every permutation of A that fixes
 c pointwise is an automorphism of A.
- (Harizanov, Knight and Morozov, 2001)

For every automorphically trivial structure \mathcal{A} , we have $D^e(\mathcal{A}) \equiv_T D_0(\mathcal{A})$.

For every automorphically nontrivial structure \mathcal{A} , and every set $X \geq_T D^e(\mathcal{A})$, there exists $\mathcal{B} \cong \mathcal{A}$ such that

$$D^e(\mathcal{B}) \equiv_T D_0(\mathcal{B}) \equiv_T X.$$

Degree Spectrum of a Model

• The Turing degree spectrum of \mathcal{A} is

$$DgSp(\mathcal{A}) = \{ deg(\mathcal{B}) : \mathcal{B} \cong \mathcal{A} \}.$$

- (Marker, 1982) For a nonstandard model \mathcal{A} of PA, $DgSp(\mathcal{A})$ is closed *upward*.
- (Knight, 1986) (i) If \mathcal{A} is automorphically nontrivial, then $DgSp(\mathcal{A})$ is closed *upward*.

(ii) If \mathcal{A} is automorphically trivial, then

 $(\forall \mathcal{B} \simeq \mathcal{A})[D_0(\mathcal{B}) \equiv_T D_0(\mathcal{A})].$

• (Hirschfeldt, Khoussainov, Shore and Slinko, 2002)

For every automorphically nontrivial structure \mathcal{A} , there is a structure \mathcal{B} , which can be:

a symmetric irreflexive graph,

a partial ordering, a lattice,

a ring, an integral domain of arbitrary characteristic,

a commutative semigroup,

a 2-step nilpotent group,

such that

$$DgSp(\mathcal{A}) = DgSp(\mathcal{B}).$$

 $\mathcal{D} =$ the set of all Turing degrees

• For every $d\in \mathcal{D}$ there is a structure \mathcal{A} in the following classes of structures such that

$$DgSp(\mathcal{A}) = \{\mathbf{a} \in \mathcal{D} : \mathbf{a} \geq d\}$$

(Richter, 1981) torsion abelian groups

(Jockusch and Knight, 1997) torsion-free abelian groups of rank 1

(Calvert, Harizanov and Shlapentokh, 2006) fields, torsion-free abelian groups of any finite rank

(Dabkowska, Dabkowski, Harizanov and Sikora, 2007) centerless (hence highly nonabelian) groups $\bullet\,$ Previous upper cone result not true for d>0 for:

(Richter, 1981) linear orderings, trees
(A. Khisamiev, 2004) abelian *p*-groups
(Csima, 2004) prime models of a complete decidable theory

• (Slaman, Wehner, 1998) There is a structure \mathcal{M} such that

$$DgSp(\mathcal{M}) = \{ \mathbf{a} \in \mathcal{D} : \mathbf{a} > \mathbf{0} \}.$$

(Hirschfeldt, 2006) Such a structure can be a prime model of a complete decidable theory.

• There are related results about degree spectra of partial structures by Soskov, A. Soskova and Ditchev.

Degree Spectrum of a Relation on a Structure

Let R be a new relation on computable A.
 The set of Turing degrees of images of R in computable isomorphic copies of A is called the degree spectrum of R on A:

 $DgSp(R) = \{ \deg f(R) \mid f : A \cong B \& B \text{ is computable} \}$

• Examples

For a linear ordering \mathcal{L}_0 with only finitely many successor pairs, we have $DgSp(Succ_{\mathcal{L}_0}) = \{0\}$.

(Downey and Moses, 1991) There is a linear ordering \mathcal{L}_1 with $DgSp(Succ_{\mathcal{L}_1}) = \{\mathbf{0'}\}.$

- DgSp(Succ_(ω,<)) = {d ∈ D : d is computably enumerable (c.e.)}
 Succ_L(a, b) ⇔ a < b ∧ ¬∃c (a < c < b)
- (Chubb, Frolov and Harizanov, 2009) If L is a computable linear ordering such that
 L ⊨ (∀x)(∃a, b)[x < a ∧ Succ(a, b)],
 then DgSp(Succ_L) is closed upward in c.e. degrees.
- The relation R is *intrinsically* P on A if in all *computable* isomorphic copies of A, the image of R is P.

{0} vs. Infinite Degree Spectra

- (Hirschfeldt, 2002) A computable relation R on a computable linear ordering is either definable by a quantifier-free formula with parameters (hence intrinsically computable), or DgSp(R) is infinite.
- (Downey, Goncharov and Hirschfeldt, 2003) A computable relation on a computable Boolean algebra is either definable by a quantifier-free formula with parameters, or DgSp(R) is infinite.
- (Khoussainov-Shore, Goncharov, Hirschfeldt, Harizanov) There are various 2-element degree spectra of computable relations.

• Let \mathcal{A} be a computable linear ordering of type $\omega + \omega^*$, say:

$$0 \prec 2 \prec 4 \prec \cdots \prec 5 \prec 3 \prec 1$$

and let R be the initial segment of type ω . R is *intrinsically* Δ_2^0 because of the corresponding definability of R and $\neg R$:

$$x \in R \Leftrightarrow \bigvee_{n} \exists x_{0} \cdots \exists x_{n} [x_{0} \prec x_{1} \prec \cdots \prec x_{n} \land x = x_{n} \land \forall y [\neg (y \prec x_{0}) \land \neg (x_{0} \prec y \prec x_{1}) \land \cdots \land \neg (x_{n-1} \prec y \prec x_{n})]]$$

and

$$x \notin R \Leftrightarrow \bigvee_{n} \exists x_{0} \cdots \exists x_{n} [x_{0} \succ x_{1} \succ \cdots \succ x_{n} \land x = x_{n} \land \forall y [\neg (y \succ x_{0}) \land \neg (x_{0} \succ y \succ x_{1}) \land \cdots \land \neg (x_{n-1} \succ y \succ x_{n})]]$$

Computable (Infinitary) Formulas

• A computable Σ_0 (Π_0) formula is a finitary quantifier-free formula. A computable Σ_α formula, $\alpha > 0$, is a *c.e. disjunction* of formulas

$\exists \overline{u} \, \psi(\overline{x}, \overline{u})$,

where ψ is computable Π_{β} for some $\beta < \alpha$. A computable Π_{α} formula, $\alpha > 0$, is a *c.e. conjunction* of formulas

 $orall \overline{u}\,\psi(\overline{x},\overline{u})$,

where ψ is computable Σ_{β} for some $\beta < \alpha$.

 (Ash, 1986) A relation defined in a countable structure A by a computable Σ_α (Π_α) formula is Σ⁰_α (Π⁰_α) relative to the atomic diagram of A.

Computability vs. Definability of Relations

• The relation R is formally c.e. (Σ_{α}^{0}) on \mathcal{A} if R is definable by a computable Σ_{1} (Σ_{α}) formula with finitely many parameters.

(Ash and Nerode, 1991) Under some effectiveness condition (enough to have the existential diagram of (\mathcal{A}, R) computable), R is *intrinsically c.e.* on \mathcal{A} iff R is *formally c.e.* on \mathcal{A} . (Barker, 1988, generalized this result to Σ_{α}^{0} .)

R is relatively intrinsically P on A if in all isomorphic copies
 B of A, the image of R is P relative to the atomic diagram of B.

(Ash-Knight-Manasse-Slaman, Chisholm, 1989) The relation R is *relatively intrinsically* Σ^0_{α} on \mathcal{A} iff R is *formally* Σ^0_{α} on \mathcal{A} . (*No* additional effectiveness needed.)

- (Goncharov, 1977, Manasse, 1982)
 There is a computable structure with an intrinsically c.e., but not relatively intrinsically c.e. relation.
- (Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon, 2005)
 For every computable *successor* ordinal α, there is a computable structure with a relation that is intrinsically Σ⁰_α, but *not relatively* intrinsically Σ⁰_α.
- (Chisholm, Fokina, Goncharov, Harizanov, Knight and Quinn, 2009)
 For every computable *limit* ordinal α, there is a computable structure with a relation that is intrinsically Σ⁰_α, but *not relatively* intrinsically Σ⁰_α.

Realizing All Computably Enumerable Degrees

(Harizanov, 1991)

• Under some effectiveness condition (enough to have the existential diagram of (A, R) computable), if R is not intrinsically computable, then DgSp(R) includes all c.e. Turing degrees.

At least one of R, $\neg R$ is not definable in \mathcal{A} by a computable Σ_1 formula with parameters.

• Under some effectiveness condition, if R is *intrinsically c.e.* and *not intrinsically computable*, then DgSp(R) includes all *c.e.* Turing degrees.

 $\neg R$ is not definable in (\mathcal{A}, R) by a computable Σ_1 formula in which the symbol R occurs only positively.

(Ash and Knight, 1997)

• Degrees coarser than Turing degrees:

$$\begin{split} & X \leq_{\Delta^0_{\alpha}} Y \Leftrightarrow X \leq_T Y \oplus \Delta^0_{\alpha} \\ & X \equiv_{\Delta^0_{\alpha}} Y \Leftrightarrow (X \leq_{\Delta^0_{\alpha}} Y \land Y \leq_{\Delta^0_{\alpha}} X) \\ & \equiv_{\Delta^0_1} \text{ is } \equiv_T \end{split}$$

Under some effectiveness conditions, if R is not intrinsically Δ⁰_α on computable A, then for every Σ⁰_α set C, there is an isomorphism f from A onto a computable structure such that f(R) ≡_{Δ⁰_α} C.

Not possible to replace these by Turing degrees.

Intrinsically Δ_1^1 Relations (Soskov, 1996)

- Suppose that A is computable, R is Δ¹₁ and invariant under automorphisms of A. Then R is definable in A by a computable formula without parameters.
- For R on a computable A the following are equivalent:

 R is intrinsically Δ¹₁,
 R is relatively intrinsically Δ¹₁,
 R is definable in A by a computable formula with finitely many parameters.
 R is intrinsically Δ¹₁ on A
 R has countably many automorphic images
 (∃c) [R invariant under automorphisms of (A, c)]
 R definable by a computable formula ψ(x,c).

Intrinsically Π_1^1 Relations

• A relation R on \mathcal{A} is formally Π_1^1 if it is definable in \mathcal{A} by a Π_1^1 disjunction of computable formulas with finitely many parameters.

(Soskov, 1996) For a computable structure \mathcal{A} and a relation R on \mathcal{A} , the following are equivalent: (i) R is intrinsically Π_1^1 , (ii) R is relatively intrinsically Π_1^1 , (iii) R is formally Π_1^1 .

• A Harrison ordering \mathcal{A} is a computable ordering of type $\omega_1^{CK}(1+\eta)$.

 $R^{\mathcal{A}}$, the initial segment of type ω_1^{CK} , is *intrinsically* Π_1^1 since it is defined by the disjunction of computable formulas saying that the interval to the left of x has order type α , for computable ordinals α . • A Harrison Boolean algebra is a computable Boolean algebra \mathcal{B} of the form $I(\omega_1^{CK}(1+\eta))$.

 $R^{\mathcal{B}}$, the set of *superatomic* elements, is intrinsically Π_1^1 since it is defined by the disjunction of computable formulas saying that x is a finite join of α -atoms, for computable α .

 A Harrison group is a computable abelian p-group G with length ω₁^{CK}, and Ulm invariants u_G(α) = ∞ for all computable α, and with infinite dimensional divisible part.

 $R^{\mathcal{G}}$, the set of elements that have computable ordinal height (the complement of the divisible part), is intrinsically Π_1^1 since it is defined by the disjunction of computable formulas saying that x has height α , for computable α .

• (Goncharov, Harizanov, Knight and Shore, 2004)

The following sets are equal:

(i) the set of Turing degrees of maximal well-ordered initial segments of Harrison orderings;

(*ii*) the set of Turing degrees of left-most paths of computable subtrees of $\omega^{<\omega}$ in which there is a path but not a hyperarithmetical one;

(*iii*) the set of Turing degrees of Π_1^1 paths through Kleene's \mathcal{O} ;

(iv) the set of Turing degrees of superatomic parts of Harrison Boolean algebras;

(v) the set of Turing degrees of the height-possessing parts of Harrison groups.

Unbounded Degree Spectra of Relations

- (Kueker, 1968) The following are equivalent for countable A:
 (i) R has fewer than 2^{ℵ0} different images under automorphisms of A;
 (ii) R is definable in A by an L_{ω1ω} formula
 with finitely many parameters.
- (Harizanov, 1991) There is an uncountable degree spectrum of a computable relation on a computable structure, which consists of **0** and pairwise incomparable nonzero Turing degrees.
- (Ash-Cholak-Knight, Harizanov, 1997) For a computable relation *R* on computable *A*, if *DgSp*(*R*) contains *every* Δ⁰₃ *Turing degree*, obtained via an isomorphism *f* of the same Turing degree as *f*(*R*), then *DgSp*(*R*) = *D*.

Spectrally Universal Models

• (Harizanov and R. Miller, 2007) For any countable linear ordering \mathcal{A} , there is a unary relation R on $\mathcal{Q} = (\mathbb{Q}, <)$ such that $DgSp(\mathcal{A}) = DgSp(R)$.

 \mathcal{U} is said to be *spectrally universal* for a theory T if for every automorphically nontrivial countable model \mathcal{A} of T, there is an embedding $f : \mathcal{A} \to \mathcal{U}$ such that \mathcal{A} as a structure, has the same degree spectrum as f(A) as a relation on \mathcal{U} .

Countable dense linear ordering and the random graph are spectrally universal.

• (Csima, Harizanov, R. Miller and Montalbán, 2009) The countable atomless Boolean algebra is spectrally universal.

Automorphism Degree Spectrum

(Harizanov, R. Miller and Morozov, 2009)

• Let \mathcal{A} be any computable structure. The *automorphism spectrum* of \mathcal{A} is the set of Turing degrees

 $\operatorname{AutSp}^*(\mathcal{A}) = \{ \deg f : f \in Aut(\mathcal{A}) \& (\exists x \in \mathcal{A})(f(x) \neq x) \}$

- There exist permutations f_0, f_1 of ω such that $f_0, f_1 \leq_T \emptyset'$ and the Turing degrees of f_0f_1 and f_1f_0 are incomparable.
- AutSp*(A) is at most countable iff it contains only hyperarithmetical degrees.

Singleton Automorphism Spectra

• If $\{d\}$ is an automorphism spectrum, then d is Δ_1^1 .

(Jockusch and McLaughlin, 1969) There exists an arithmetical Turing degree d such that no computable structure has automorphism spectrum $\{d\}$.

- There exists a computable structure C₀ such that for every c.e. degree d, some computable copy of C₀ has automorphism spectrum {d}.
- There exists a computable structure C_1 such that for every Σ_2^0 degree $d \ge_T 0'$, some computable copy of C_1 has automorphism spectrum $\{d\}$.

- For every Σ⁰_{n+1} degree d ≥_T 0⁽ⁿ⁾, some computable structure has automorphism spectrum {d} and its isomorphism type depends only on n.
- For every n ∈ ω, there exists a computable structure A_n and a Turing degree d with 0⁽ⁿ⁾ ≤_T d ≤_T 0⁽ⁿ⁺²⁾ such that d is incomparable with 0⁽ⁿ⁺¹⁾ and AutSp*(A_n) = {d}.
- (in Odifreddi, 1999) For any Turing degrees *d* such that
 0^(α) ≤_T *d* ≤_T 0^(α+1) for some computable ordinal α,
 there exists a computable *A* with automorphism spectrum {*d*}.

Automorphism Spectra of Incomparable Degrees

- Let d₀ and d₁ be incomparable Turing degrees.
 Then no computable structure M has AutSp*(M) = {d₀, d₁}, and no computable structure M has AutSp*(M) = {0, d₀, d₁}.
- There exist pairwise incomparable Δ⁰₂ Turing degrees
 d₀, d₁, d₂, and computable structures A and B such that
 AutSp*(A) = {d₀, d₁, d₂} and AutSp*(B) = {0, d₀, d₁, d₂}.

There exist c.e. sets X and Y such that $X \subset Y$ and the degrees $\deg X$, $\deg(Y - X)$, $\deg Y$ are pairwise incomparable.

- If {d₀,..., d_n} is a set of Turing degrees such that each singleton {d_i} is an automorphism spectrum, then there exists a computable structure A the automorphism spectrum of which is the closure of {d₀,..., d_n} under joins.
- A total function f : ω → ω is a Π₁⁰-function singleton if there exists a computable tree T ⊆ ω^{<ω} through which f is the unique infinite path.
- For a Turing degree d, the following are equivalent.
 (i) {d} is the automorphism spectrum of some computable structure A;
 (ii) d contains a Π⁰₁-function singleton.

- For a computable structure A, the following are equivalent:

 (i) AutSp*(A) is at most countable;
 (ii) Every degree in AutSp*(A) contains a Π⁰₁-function singleton.
- There exists a computable structure *M* such that AutSp*(*M*) consists of all c.e. degrees.

There exists a computable structure \mathcal{M}_n such that

$$\mathsf{AutSp}^*(\mathcal{M}_n) = \{ d \in \Sigma_{n+1}^0 : d \geq_T 0^{(n)} \}.$$

• There exists a computable structure \mathcal{A} the spectrum of which is the *union of the upper cones* above each of an infinite antichain of c.e. degrees.

The same holds for any finite antichain of degrees of Π_1^0 -function singletons.

Degree Spectra of Orders on Computable Structures

 $\mathcal{M} = (M, \cdot)$ magma (a set with a binary operation)

M is (partially) *left-orderable* if there is a linear (partial) ordering < on *M* that is left invariant: (∀x, y, z)[x < y ⇒ z ⋅ x < z ⋅ y]

 \mathcal{M} is *bi-orderable* (orderable) if $(\forall x, y, z)[x < y \Rightarrow (z \cdot x < z \cdot y) \land (x \cdot z < y \cdot z)]$

• $LO(\mathcal{M})$ $(BiO(\mathcal{M}))$ is the set of all left orders (bi-orders) on \mathcal{M} *Turing degree spectrum* of left-orders on computable left-orderable \mathcal{M} :

 $DgSp_{\mathcal{M}}(LO) = \{ \deg(R) \mid R \in LO(\mathcal{M}) \}$

Orders on Groups

• Given a left order $<_l$ on a group \mathcal{G} , we have a right order $<_r$: $x <_r y \Leftrightarrow y^{-1} <_l x^{-1}$

 $\mathcal G$ is left-orderable group $\Rightarrow \mathcal G$ is torsion-free $e < x \Rightarrow x < x^2 < \cdots < x^n$

Every torsion-free nilpotent group is orderable. There is a torsion-free, but not left-orderable group.

Let < be a partial left order on a group G
Positive partial cone: P = {a ∈ G | a ≥ e}
Negative partial cone: P⁻¹ = {a ∈ G | a ≤ e}

1.
$$PP \subseteq P$$
 (*P* sub-semigroup of \mathcal{G})
2. $P \cap P^{-1} = \{e\}$ (*P* pure)

- P with 1 & 2 defines a partial left order \leq_P on \mathcal{G} : $x \leq_P y \Leftrightarrow x^{-1}y \in P$
- *P* with 1 & 2 defines a *left order* if
 P ∪ *P*⁻¹ = *G* (*P total*)
- *P* with 1, 2 & 3 defines a *bi-order* if:
 4. (∀g ∈ G)[g⁻¹Pg ⊆ P] (*P* normal)

- For groups, orders often identified with their positive cones.
 Example: G = Z ⊕ Z bi-orderable with a positive cone
 P = {(a, b) | 0 < a ∨ (a = 0 ∧ 0 ≤ b)}
- Fundamental group of Klein bottle $\mathcal{G} = \langle x, y \mid xyx^{-1}y = e \rangle$ left-orderable, but not bi-orderable.

Positive cone $P = \{x^n y^m \mid n > 0 \lor (n = 0 \land m \ge 0)\}$ defines a left order on \mathcal{G} .

If < bi-order on
$$\mathcal{G}$$
, then $y > e$ or $y < e$
 $y > e \Rightarrow y^{-1} = xyx^{-1} > e$, contradiction.

• Turing degree spectrum of bi-orders on computable orderable \mathcal{G} :

 $DgSp_{\mathcal{G}}(BiO) = \{ \deg(P) \mid P \subseteq G \text{ is a positive order-cone on } \mathcal{G} \}$ $\deg(P) = \deg(\leq_P)$

- (Solomon, 2002)
 DgSp_G(BiO) = D
 for a computable torsion free abelian group G of finite rank n > 1.
- (Solomon, 2002)
 DgSp_G(BiO) ⊇ {x ∈ D | x ≥ 0'}
 for a computable torsion free abelian group G of infinite rank.
- There are computable groups with countably many bi-orders.

Topology on $LO(\mathcal{M})$

• Topology defined on $LO(\mathcal{M})$ by subbasis $\{S_{(a,b)}\}_{(a,b)\in(M\times M)-\Delta}$ where $\Delta = \{(a,a) \mid a \in M\}$:

$$S_{(a,b)} = \{ R \in LO(\mathcal{M}) \mid (a,b) \in R \}.$$

- (Dabkowska, Dabkowski, Harizanov, Przytycki and Veve, 2007)
 For a magma *M*, *LO*(*M*) is a compact space.
- (Sikora, 2004) For n > 1, LO(Zⁿ) is homeomorphic to the Cantor set.
 (Dabkowska, 2006) LO(Z^ω) is homeomorphic to the Cantor set.

- (Linnell, 2006) The space of left orders of a countable left-orderable group is either finite or contains a homeomorphic copy of the Cantor set.
- (Solomon, 1998) For every orderable computable group G, there is a computable binary tree T and a Turing degree preserving bijection from BiO(G) to the set of all infinite paths of T.

Hence, by the Low Basis Theorem of Jockusch and Soare, \mathcal{T} has a *low* infinite path, so $BiO(\mathcal{G})$ contains an order of *low* Turing degree.

- (Downey and Kurtz, 1986) There is a computable torsion-free abelian group with no computable order.
- (Dobrica, 1983) Every computable torsion-free abelian group is isomorphic to a computable group with a computable basis.

- A group G for which every partial (left) order can be extended to a total (left) order is called *fully orderable* (*fully left-orderable*).
 Torsion-free abelian groups are fully orderable.
- (Dabkowska, Dabkowski, Harizanov and Togha, 2009)
 Let G be a computable, *fully* left-orderable group and d a Turing degree such that:

(a) no left order on \mathcal{G} is determined uniquely by any finite subset;

(b) for a finite set $A \subset G \setminus \{e\}$, the problem " $e \in sgr(A)$ " is d-decidable;

(c) $DgSp_{\mathcal{G}}(LO)$ is closed upward.

Then

$$DgSp_{\mathcal{G}}(LO) \supseteq \{\mathbf{a} \in \mathcal{D} \mid \mathbf{a} \geq \mathbf{d}\}$$

and $LO(\mathcal{G})$ is homeomorphic to the *Cantor set*.

Orders on Free Groups F_n

 $F_n = \langle x_1, x_2, ..., x_n \mid \rangle$ free group of rank n

- Conjecture (Sikora, 2004) For n > 1, the space $BiO(F_n)$ is homeomorphic to the Cantor set.
- (Navas-Flores, 2008) The space $LO(F_n)$ for n > 1 is homeomorphic to the Cantor set.
- (Dabkowska, Dabkowski, Harizanov and Togha, 2009) For a free group F_n of rank n > 1, we have $DgSp_{F_n}(BiO) = \mathcal{D}$.

Free groups are not fully left-orderable.