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Computable Models

Consider countable structures A for computable languages L.

• Atomic diagram of A, D0(A), is the set of all
quantifier-free sentences of LA true in AA.

• Turing degree of A is the Turing degree of D0(A).
A is computable (recursive) if its Turing degree is 0.

• D0(A) may be of much lower Turing degree than Th(A).
N , the standard model of arithmetic, is computable.
True Arithmetic, TA = Th(N ), is of Turing degree 0(ω).

∅0 is the halting set and 00 is its Turing degree.



• (Tennenbaum, 1959) If A is a nonstandard model of
Peano Arithmetic (PA), then A is not computable.

• (Knight, 2001) If A is a nonstandard model of PA, then
there exists B ∼= A such that D0(B) <T D0(A).

• ≤T Turing reducibility
A set D and its Turing degree d are called
low if d0= 00.

• (Harrington, Knight, 1995) There is a nonstandard modelM
of PA such that D0(M) is low and Th(M) ≡T ∅(ω).



• Let De(A) be the elementary diagram of A.

• A structure A is automorphically trivial if there is a sequence
−→c ∈ A<ω such that every permutation of A that fixes
−→c pointwise is an automorphism of A.

• (Harizanov, Knight and Morozov, 2001)

For every automorphically trivial structure A, we have
De(A) ≡T D0(A).

For every automorphically nontrivial structure A, and every set
X ≥T De(A), there exists B ∼= A such that

De(B) ≡T D0(B) ≡T X.



Degree Spectrum of a Model

• The Turing degree spectrum of A is

DgSp(A) = {deg(B) : B ∼= A}.

• (Marker, 1982) For a nonstandard model A of PA,
DgSp(A) is closed upward.

• (Knight, 1986) (i) If A is automorphically nontrivial, then
DgSp(A) is closed upward.

(ii) If A is automorphically trivial, then

(∀B ' A)[D0(B) ≡T D0(A)].



• (Hirschfeldt, Khoussainov, Shore and Slinko, 2002)

For every automorphically nontrivial structure A, there is
a structure B, which can be:

a symmetric irreflexive graph,

a partial ordering, a lattice,

a ring, an integral domain of arbitrary characteristic,

a commutative semigroup,

a 2-step nilpotent group,

such that

DgSp(A) = DgSp(B).



D = the set of all Turing degrees

• For every d ∈ D there is a structure A in the following
classes of structures such that

DgSp(A) = {a ∈D : a ≥ d}

(Richter, 1981) torsion abelian groups

(Jockusch and Knight, 1997) torsion-free abelian groups of rank 1

(Calvert, Harizanov and Shlapentokh, 2006) fields, torsion-free
abelian groups of any finite rank

(Dabkowska, Dabkowski, Harizanov and Sikora, 2007) centerless
(hence highly nonabelian) groups



• Previous upper cone result not true for d > 0 for:

(Richter, 1981) linear orderings, trees
(A. Khisamiev, 2004) abelian p-groups
(Csima, 2004) prime models of a complete decidable theory

• (Slaman, Wehner, 1998) There is a structureM such that

DgSp(M) = {a ∈D : a > 0}.

(Hirschfeldt, 2006) Such a structure can be a prime model
of a complete decidable theory.

• There are related results about degree spectra of
partial structures by Soskov, A. Soskova and Ditchev.



Degree Spectrum of a Relation on a Structure

• Let R be a new relation on computable A.
The set of Turing degrees of images of R in computable
isomorphic copies of A is called the degree spectrum of R on A:

DgSp(R) = {deg f(R) | f : A ∼= B & B is computable}

• Examples
For a linear ordering L0 with only finitely many successor pairs,
we have DgSp(SuccL0) = {0}.

(Downey and Moses, 1991) There is a linear ordering L1 with
DgSp(SuccL1) = {0

0}.



• DgSp(Succ(ω,<)) = {d ∈ D : d is computably enumerable (c.e.)}

SuccL(a, b)⇔ a < b ∧ ¬∃c (a < c < b)

• (Chubb, Frolov and Harizanov, 2009) If L is a computable
linear ordering such that
L |= (∀x)(∃a, b)[x < a ∧ Succ(a, b)],
then DgSp(SuccL) is closed upward in c.e. degrees.

• The relation R is intrinsically P on A if in all computable
isomorphic copies of A, the image of R is P.



{0} vs. Infinite Degree Spectra

• (Hirschfeldt, 2002) A computable relation R on a computable
linear ordering is either definable by a quantifier-free formula
with parameters (hence intrinsically computable), or
DgSp(R) is infinite.

• (Downey, Goncharov and Hirschfeldt, 2003) A computable
relation on a computable Boolean algebra is either definable
by a quantifier-free formula with parameters, or
DgSp(R) is infinite.

• (Khoussainov-Shore, Goncharov, Hirschfeldt, Harizanov)
There are various 2-element degree spectra of computable relations.



• Let A be a computable linear ordering of type ω + ω∗, say:

0 ≺ 2 ≺ 4 ≺ · · · ≺ 5 ≺ 3 ≺ 1,

and let R be the initial segment of type ω. R is intrinsically ∆02
because of the corresponding definability of R and ¬R:

x ∈ R⇔
_
n
∃x0 · · ·∃xn[x0 ≺ x1 ≺ · · · ≺ xn ∧ x = xn ∧

∀y[¬(y ≺ x0) ∧ ¬(x0 ≺ y ≺ x1) ∧ · · · ∧ ¬(xn−1 ≺ y ≺ xn)]]

and

x /∈ R⇔
_
n
∃x0 · · ·∃xn[x0 Â x1 Â · · · Â xn ∧ x = xn ∧

∀y[¬(y Â x0) ∧ ¬(x0 Â y Â x1) ∧ · · · ∧ ¬(xn−1 Â y Â xn)]]



Computable (Infinitary) Formulas

• A computable Σ0 (Π0) formula is a finitary quantifier-free formula.
A computable Σα formula, α > 0, is a c.e. disjunction of formulas

∃uψ(x, u),
where ψ is computable Πβ for some β < α.
A computable Πα formula, α > 0, is a c.e. conjunction of formulas

∀uψ(x, u),
where ψ is computable Σβ for some β < α.

• (Ash, 1986) A relation defined in a countable structure A
by a computable Σα (Πα) formula is Σ0α (Π

0
α) relative

to the atomic diagram of A.



Computability vs. Definability of Relations

• The relation R is formally c.e. (Σ0α) on A if R is definable by
a computable Σ1 (Σα) formula with finitely many parameters.

(Ash and Nerode, 1991) Under some effectiveness condition
(enough to have the existential diagram of (A, R) computable),
R is intrinsically c.e. on A iff R is formally c.e. on A.
(Barker, 1988, generalized this result to Σ0α.)

• R is relatively intrinsically P on A if in all isomorphic copies
B of A, the image of R is P relative to the atomic diagram of B.

(Ash-Knight-Manasse-Slaman, Chisholm, 1989)
The relation R is relatively intrinsically Σ0α on A iff
R is formally Σ0α on A. (No additional effectiveness needed.)



• (Goncharov, 1977, Manasse, 1982)
There is a computable structure with an intrinsically c.e., but
not relatively intrinsically c.e. relation.

• (Goncharov, Harizanov, Knight, McCoy, R. Miller and Solomon, 2005)
For every computable successor ordinal α, there is a computable
structure with a relation that is intrinsically Σ0α, but
not relatively intrinsically Σ0α.

• (Chisholm, Fokina, Goncharov, Harizanov, Knight and Quinn, 2009)
For every computable limit ordinal α, there is a computable
structure with a relation that is intrinsically Σ0α, but
not relatively intrinsically Σ0α.



Realizing All Computably Enumerable Degrees

(Harizanov, 1991)

• Under some effectiveness condition (enough to have the
existential diagram of (A, R) computable), if R is not intrinsically
computable, then DgSp(R) includes all c.e. Turing degrees.

At least one of R, ¬R is not definable in A by a computable Σ1 formula with parameters.

• Under some effectiveness condition, if R is intrinsically c.e. and not
intrinsically computable, then DgSp(R) includes all c.e. Turing degrees.

¬R is not definable in (A, R) by a computable Σ1 formula in which the symbol R occurs

only positively.



(Ash and Knight, 1997)

• Degrees coarser than Turing degrees:

X ≤∆0α
Y ⇔ X ≤T Y ⊕∆0α

X ≡∆0α
Y ⇔ (X ≤∆0α

Y ∧ Y ≤∆0α
X)

≡∆01
is ≡T

• Under some effectiveness conditions, if R is not intrinsically ∆0α
on computable A, then for every Σ0α set C, there is an
isomorphism f from A onto a computable structure
such that f(R) ≡∆0α

C.

Not possible to replace these by Turing degrees.



Intrinsically ∆11 Relations
(Soskov, 1996)

• Suppose that A is computable, R is ∆11 and invariant
under automorphisms of A. Then R is definable in A by
a computable formula without parameters.

• For R on a computable A the following are equivalent:
(i) R is intrinsically ∆11,
(ii) R is relatively intrinsically ∆11,
(iii) R is definable in A by a computable formula with
finitely many parameters.
R is intrinsically ∆11 on A
⇒ R has countably many automorphic images

⇒ (∃c) [R invariant under automorphisms of (A, c)]
⇒ R definable by a computable formula ψ(x,c).



Intrinsically Π11 Relations

• A relation R on A is formally Π11 if it is definable in A by
a Π11 disjunction of computable formulas with finitely many parameters.

(Soskov, 1996) For a computable structure A and
a relation R on A, the following are equivalent:
(i) R is intrinsically Π11,
(ii) R is relatively intrinsically Π11,
(iii) R is formally Π11.

• A Harrison ordering A is a computable ordering of type ωCK1 (1 + η).

RA, the initial segment of type ωCK1 , is intrinsically Π11 since
it is defined by the disjunction of computable formulas
saying that the interval to the left of x has order type α,
for computable ordinals α.



• A Harrison Boolean algebra is a computable Boolean algebra B
of the form I(ωCK1 (1 + η)).

RB, the set of superatomic elements, is intrinsically Π11 since
it is defined by the disjunction of computable formulas
saying that x is a finite join of α-atoms, for computable α.

• A Harrison group is a computable abelian p-group G
with length ωCK1 , and Ulm invariants uG(α) =∞
for all computable α, and with infinite dimensional divisible part.

RG, the set of elements that have computable ordinal height
(the complement of the divisible part), is intrinsically Π11 since
it is defined by the disjunction of computable formulas
saying that x has height α, for computable α.



• (Goncharov, Harizanov, Knight and Shore, 2004)

The following sets are equal:

(i) the set of Turing degrees of maximal well-ordered
initial segments of Harrison orderings;

(ii) the set of Turing degrees of left-most paths of
computable subtrees of ω<ω in which there is a path
but not a hyperarithmetical one;

(iii) the set of Turing degrees of Π11 paths through Kleene’s O;

(iv) the set of Turing degrees of superatomic parts of
Harrison Boolean algebras;

(v) the set of Turing degrees of the height-possessing parts of
Harrison groups.



Unbounded Degree Spectra of Relations

• (Kueker, 1968) The following are equivalent for countable A:
(i) R has fewer than 2ℵ0 different images under automorphisms of A;
(ii) R is definable in A by an Lω1ω formula
with finitely many parameters.

• (Harizanov, 1991) There is an uncountable degree spectrum of a
computable relation on a computable structure, which consists
of 0 and pairwise incomparable nonzero Turing degrees.

• (Ash-Cholak-Knight, Harizanov, 1997) For a computable relation
R on computable A, if DgSp(R) contains every ∆03
Turing degree, obtained via an isomorphism f of the same
Turing degree as f(R), then DgSp(R) = D.



Spectrally Universal Models

• (Harizanov and R. Miller, 2007)
For any countable linear ordering A, there is a unary relation R on
Q = (Q, <) such that DgSp(A) = DgSp(R).

U is said to be spectrally universal for a theory T if for every
automorphically nontrivial countable model A of T , there
is an embedding f : A→ U such that A as a structure, has
the same degree spectrum as f(A) as a relation on U .

Countable dense linear ordering and the random graph are
spectrally universal.

• (Csima, Harizanov, R. Miller and Montalbán, 2009)
The countable atomless Boolean algebra is spectrally universal.



Automorphism Degree Spectrum
(Harizanov, R. Miller and Morozov, 2009)

• Let A be any computable structure. The automorphism spectrum
of A is the set of Turing degrees

AutSp∗(A) = {deg f : f ∈ Aut(A) & (∃x ∈ A)(f(x) 6= x)}

• There exist permutations f0, f1 of ω such that f0, f1 ≤T ∅0
and the Turing degrees of f0f1 and f1f0 are incomparable.

• AutSp∗(A) is at most countable iff it contains only
hyperarithmetical degrees.



Singleton Automorphism Spectra

• If {d} is an automorphism spectrum, then d is ∆11.

(Jockusch and McLaughlin, 1969) There exists an arithmetical
Turing degree d such that no computable structure has
automorphism spectrum {d}.

• There exists a computable structure C0 such that for every
c.e. degree d, some computable copy of C0 has
automorphism spectrum {d}.

• There exists a computable structure C1 such that for every
Σ02 degree d ≥T 0

0, some computable copy of C1 has
automorphism spectrum {d}.



• For every Σ0n+1 degree d ≥T 0
(n), some computable structure

has automorphism spectrum {d} and its isomorphism type
depends only on n.

• For every n ∈ ω, there exists a computable structure An and
a Turing degree d with 0(n) ≤T d ≤T 0

(n+2) such that d is
incomparable with 0(n+1) and AutSp∗(An) = {d}.

• (in Odifreddi, 1999) For any Turing degrees d such that
0(α) ≤T d ≤T 0

(α+1) for some computable ordinal α,
there exists a computable A with automorphism spectrum {d}.



Automorphism Spectra of Incomparable Degrees

• Let d0 and d1 be incomparable Turing degrees.
Then no computable structureM has AutSp∗(M) = {d0,d1},
and no computable structureM has AutSp∗(M) = {0,d0,d1}.

• There exist pairwise incomparable ∆02 Turing degrees
d0, d1, d2, and computable structures A and B such that
AutSp∗(A) = {d0,d1,d2} and AutSp∗(B) = {0,d0,d1,d2}.

There exist c.e. sets X and Y such that X ⊂ Y and the degrees

degX , deg(Y −X), deg Y are pairwise incomparable.



• If {d0, . . . ,dn} is a set of Turing degrees such that each
singleton {di} is an automorphism spectrum, then there exists
a computable structure A the automorphism spectrum of which
is the closure of {d0, . . . ,dn} under joins.

• A total function f : ω → ω is a Π01-function singleton
if there exists a computable tree T ⊆ ω<ω through which
f is the unique infinite path.

• For a Turing degree d, the following are equivalent.
(i) {d} is the automorphism spectrum of some
computable structure A;
(ii) d contains a Π01-function singleton.



• For a computable structure A, the following are equivalent:
(i) AutSp∗(A) is at most countable;
(ii) Every degree in AutSp∗(A) contains a Π01-function singleton.

• There exists a computable structureM such that
AutSp∗(M) consists of all c.e. degrees.

There exists a computable structureMn such that

AutSp∗(Mn) = {d ∈ Σ0n+1 : d ≥T 0
(n)}.

• There exists a computable structure A the spectrum of which is
the union of the upper cones above each of an infinite
antichain of c.e. degrees.

The same holds for any finite antichain of degrees of
Π01-function singletons.



Degree Spectra of Orders on Computable Structures

M = (M, ·) magma (a set with a binary operation)

• M is (partially) left-orderable if
there is a linear (partial) ordering < on M that is left invariant:
(∀x, y, z)[x < y ⇒ z · x < z · y]

M is bi-orderable (orderable) if
(∀x, y, z)[x < y ⇒ (z · x < z · y) ∧ (x · z < y · z)]

• LO(M) (BiO(M)) is the set of all left orders (bi-orders) onM
Turing degree spectrum of left-orders on computable left-orderableM :

DgSpM(LO) = {deg(R) | R ∈ LO(M)}



Orders on Groups

• Given a left order <l on a group G, we have a right order <r:
x <r y ⇔ y−1 <l x

−1

G is left-orderable group ⇒ G is torsion-free
e < x⇒ x < x2 < · · · < xn

Every torsion-free nilpotent group is orderable.
There is a torsion-free, but not left-orderable group.

• Let < be a partial left order on a group G
Positive partial cone: P = {a ∈ G | a ≥ e}
Negative partial cone: P−1 = {a ∈ G | a ≤ e}



1. PP ⊆ P (P sub-semigroup of G)
2. P ∩ P−1 = {e} (P pure)

• P with 1 & 2 defines a partial left order ≤P on G:
x ≤P y ⇔ x−1y ∈ P

• P with 1 & 2 defines a left order if
3. P ∪ P−1 = G (P total)

• P with 1, 2 & 3 defines a bi-order if:
4. (∀g ∈ G)[g−1Pg ⊆ P ] (P normal)



• For groups, orders often identified with their positive cones.
Example: G = Z⊕ Z bi-orderable with a positive cone
P = {(a, b) | 0 < a ∨ (a = 0 ∧ 0 ≤ b)}

• Fundamental group of Klein bottle
G =

D
x, y | xyx−1y = e

E
left-orderable, but not bi-orderable.

Positive cone P = {xnym | n > 0 ∨ (n = 0 ∧m ≥ 0)}
defines a left order on G.

If < bi-order on G, then y > e or y < e

y > e⇒ y−1 = xyx−1 > e, contradiction.



• Turing degree spectrum of bi-orders on computable orderable G :

DgSpG(BiO) = {deg(P ) | P ⊆ G is a positive order-cone on G}
deg(P ) = deg(≤P )

• (Solomon, 2002)
DgSpG(BiO) = D
for a computable torsion free abelian group G of finite rank n > 1.

• (Solomon, 2002)
DgSpG(BiO) ⊇ {x ∈ D | x ≥ 00}
for a computable torsion free abelian group G of infinite rank.

• There are computable groups with countably many bi-orders.



Topology on LO(M)

• Topology defined on LO(M) by subbasis {S(a,b)}(a,b)∈(M×M)−∆
where ∆ = {(a, a) | a ∈M}:

S(a,b) = {R ∈ LO(M) | (a, b) ∈ R}.

• (Dabkowska, Dabkowski, Harizanov, Przytycki and Veve, 2007)
For a magmaM, LO(M) is a compact space.

• (Sikora, 2004) For n > 1, LO(Zn) is homeomorphic to the Cantor set.

(Dabkowska, 2006) LO(Zω) is homeomorphic to the Cantor set.



• (Linnell, 2006) The space of left orders of a countable left-orderable
group is either finite or contains a homeomorphic copy of the Cantor set.

• (Solomon, 1998) For every orderable computable group G, there
is a computable binary tree T and a Turing degree preserving
bijection from BiO(G) to the set of all infinite paths of T .

Hence, by the Low Basis Theorem of Jockusch and Soare,
T has a low infinite path, so BiO(G) contains an order of
low Turing degree.

• (Downey and Kurtz, 1986) There is a computable torsion-free
abelian group with no computable order.

• (Dobrica, 1983) Every computable torsion-free abelian group is
isomorphic to a computable group with a computable basis.



• A group G for which every partial (left) order can be extended to
a total (left) order is called fully orderable (fully left-orderable).

Torsion-free abelian groups are fully orderable.

• (Dabkowska, Dabkowski, Harizanov and Togha, 2009)
Let G be a computable, fully left-orderable group and
d a Turing degree such that:
(a) no left order on G is determined uniquely by any
finite subset;
(b) for a finite set A ⊂ G\{e}, the problem “e ∈ sgr(A)”
is d-decidable;
(c) DgSpG(LO) is closed upward.
Then

DgSpG(LO) ⊇ {a ∈ D | a ≥ d}
and LO(G) is homeomorphic to the Cantor set.



Orders on Free Groups Fn

Fn = hx1, x2, ..., xn | i free group of rank n

• Conjecture (Sikora, 2004) For n > 1, the space BiO(Fn) is
homeomorphic to the Cantor set.

• (Navas-Flores, 2008) The space LO(Fn) for n > 1 is
homeomorphic to the Cantor set.

• (Dabkowska, Dabkowski, Harizanov and Togha, 2009)
For a free group Fn of rank n > 1, we have DgSpFn(BiO) = D.

Free groups are not fully left-orderable.


