Topological logics with connectedness predicates

Roman Kontchakov

School of Computer Science and Inf. Systems, Birkbeck College, London

http://www.dcs.bbk.ac.uk/~roman

joint work with

Ian Pratt-Hartmann, Frank Wolter and Michael Zakharyaschev

terms:

 $au ::= r_i \mid \mathbf{0} \mid \overline{ au} \mid au_1 \cap au_2 \mid au_1 \cup au_2 \mid au^\circ \mid au^- \mid \dots$

formulas:

 $arphi ::= au_1 = au_2 \ \mid \ au_1 \subseteq au_2 \ \mid \ c(au) \ \mid \
eg arphi \ \mid \ arphi arphi \ \mid \ arphi arphi \ arphi \$

terms: subsets of T $\tau ::= r_i \mid \mathbf{0} \mid \overline{\tau} \mid \tau_1 \cap \tau_2 \mid \tau_1 \cup \tau_2 \mid \tau^{\circ} \mid \tau^{-} \mid \dots$ $\xrightarrow{\text{empty set complement}} \quad \tau_1 \cup \tau_2 \mid \tau_1 \cup \tau_2 \mid \tau^{\circ} \mid \tau^{-} \mid \dots$ $\xrightarrow{\text{empty set complement}} \quad \text{interior closure}$ formulas: true or false $\varphi ::= \tau_1 = \tau_2 \mid \tau_1 \subseteq \tau_2 \mid c(\tau) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \dots$ $\xrightarrow{\text{e.g., } \mathfrak{M} \models \tau_1 = \tau_2 \quad \text{iff} \quad \tau_1^{\mathfrak{M}} = \tau_2^{\mathfrak{M}}$ $\mathfrak{M} \models c(\tau) \quad \text{iff} \quad \tau^{\mathfrak{M}} \text{ is connected}$

Examples:

$$c(r_1) \wedge c(r_2) \wedge (r_1 \cap r_2 \neq \mathbf{0}) \rightarrow c(r_1 \cup r_2)$$

`the union of two intersecting connected sets r_1 and r_2 is connected'

terms:subsets of Ttopological model $\mathfrak{M} = (T, \cdot^{\mathfrak{M}})$ τ ::= $r_i \mid \mathbf{0} \mid \overline{\tau} \mid \tau_1 \cap \tau_2 \mid \tau_1 \cup \tau_2 \mid \tau^{\circ} \mid \tau^{-} \mid \ldots$ empty set complementinterior closure

formulas: true or false

$$\varphi ::= \tau_1 = \tau_2 | \tau_1 \subseteq \tau_2 | c(\tau) | \neg \varphi | \varphi_1 \land \varphi_2 | \dots$$

e.g., $\mathfrak{M} \models \tau_1 = \tau_2$ iff $\tau_1^{\mathfrak{M}} = \tau_2^{\mathfrak{M}}$
 $\mathfrak{M} \models c(\tau)$ iff $\tau^{\mathfrak{M}}$ is connected

Examples:

$$c(r_1) \land c(r_2) \land (r_1 \cap r_2 \neq \mathbf{0}) \rightarrow c(r_1 \cup r_2)$$

`the union of two intersecting connected sets r_1 and r_2 is connected'

 $c(r_1) \ \land \ (r_1 \subseteq r_2) \ \land \ (r_2 \subseteq r_1^-) \
ightarrow \ c(r_2)$

`if r_1 is a connected set, and r_2 is sandwiched between r_1 and its closure,

then r_2 is also connected'

terms:subsets of Ttopological model $\mathfrak{M} = (T, \cdot^{\mathfrak{M}})$ $\tau ::= r_i \mid \mathbf{0} \mid \overline{\tau} \mid \tau_1 \cap \tau_2 \mid \tau_1 \cup \tau_2 \mid \tau^{\circ} \mid \tau^{-} \mid \ldots$ empty set complement

formulas: true or false

Examples:

$$c(r_1) \wedge c(r_2) \wedge (r_1 \cap r_2 \neq \mathbf{0}) \rightarrow c(r_1 \cup r_2)$$

`the union of two intersecting connected sets r_1 and r_2 is connected'

 $c(r_1) \ \land \ (r_1 \subseteq r_2) \ \land \ (r_2 \subseteq r_1^-) \
ightarrow \ c(r_2)$

`if r_1 is a connected set, and r_2 is sandwiched between r_1 and its closure,

then r_2 is also connected'

Let $\mathcal L$ a language with functions F and predicates P and $\mathcal K$ be a class of models

 $Sat(\mathcal{L},\mathcal{K})$ is the set of \mathcal{L} -formulas satisfiable in models over \mathcal{K}

$\mathcal{S}4_u$ -terms:	au	::=	$r_i \hspace{.1 in} \mid \hspace{.1 in} \overline{ au} \hspace{.1 in} \mid \hspace{.1 in} au_1 \cap au_2 \hspace{.1 in} \mid \hspace{.1 in} au_1 \cup au_2 \hspace{.1 in} \mid \hspace{.1 in} au^\circ \hspace{.1 in} \mid \hspace{.1 in} au^-$
$\mathcal{S}4_u$ -formulas:	arphi	::=	$ au_1 = au_2 \hspace{.1in} \hspace{.1in} eg arphi \hspace{.1in} \hspace{.1in} arphi_1 \wedge arphi_2 \hspace{.1in} \hspace{.1in} arphi_1 ee arphi_2$

$\mathcal{S}4_u$ -terms:	au	::=	$r_i \hspace{.1 in} \mid \hspace{.1 in} \overline{ au} \hspace{.1 in} \mid \hspace{.1 in} au_1 \cap au_2 \hspace{.1 in} \mid \hspace{.1 in} au_1 \cup au_2 \hspace{.1 in} \mid \hspace{.1 in} au^\circ \hspace{.1 in} \mid \hspace{.1 in} au^-$
$\mathcal{S}4_u$ -formulas:	arphi	::=	$ au_1 = au_2 \hspace{.1in} \hspace{.1in} eg arphi \hspace{.1in} \hspace{.1in} arphi_1 \wedge arphi_2 \hspace{.1in} \hspace{.1in} arphi_1 ee arphi_2$

NB. This definition (although it does not allows nested universal modalities) is as expressive as the `standard' one

$\mathcal{S}4_u$ -terms:	au	::=	$r_i \mid \overline{ au} \mid au_1 \cap au_2 \mid au_1 \cup au_2 \mid au^\circ \mid au^-$	
$\mathcal{S}4_u$ -formulas:	arphi	::=	$ au_1 = au_2 \hspace{.1in} \hspace{.1in} eg arphi \hspace{.1in} \hspace{.1in} arphi_1 \wedge arphi_2 \hspace{.1in} \hspace{.1in} arphi_1 ee arphi_2$	

NB. This definition (although it does not allows nested universal modalities) is as expressive as the `standard' one

(Shehtman 99, Areces et. al 00): $Sat(S4_u, ALL) = Sat(S4_u, ALEK)$,

and this set is **PSPACE**-complete

(Aleksandrov spaces = quasi-ordered Kripke frames)

$\mathcal{S}4_u$ -terms:	au	::=	$r_i \mid \overline{ au} \mid au_1 \cap au_2 \mid au_1 \cup au_2 \mid au^\circ \mid au^-$	
$\mathcal{S}4_u$ -formulas:	arphi	::=	$ au_1 = au_2 \hspace{.1in} \hspace{.1in} eg arphi \hspace{.1in} \hspace{.1in} arphi_1 \wedge arphi_2 \hspace{.1in} \hspace{.1in} arphi_1 ee arphi_2$	

NB. This definition (although it does not allows nested universal modalities) is as expressive as the `standard' one

(Shehtman 99, Areces et. al 00): $Sat(S4_u, ALL) = Sat(S4_u, ALEK)$,

and this set is **PSPACE**-complete

(Aleksandrov spaces = quasi-ordered Kripke frames)

NB. $\operatorname{Sat}(\mathcal{S}_{4_u}, \operatorname{ALL}) \neq \operatorname{Sat}(\mathcal{S}_{4_u}, \mathbb{R}^n)$ (in contrast with \mathcal{S}_4)

Example:

 $(r_1 \neq \mathbf{0}) \land (r_2 \neq \mathbf{0}) \land (r_1 \cup r_2 = \mathbf{1}) \land (r_1^- \cap r_2 = \mathbf{0}) \land (r_1 \cap r_2^- = \mathbf{0})$ is satisfiable in a topological space T iff T is not connected

$\mathcal{S}4_u$ -terms:	au	::=	$r_i \mid \overline{ au} \mid au$	$ au_1 \cap au_2 \hspace{0.1 cm} \hspace{0.1 cm} au_1 \cup au_2$	$\mid au^\circ \mid au^-$
$\mathcal{S}4_u$ -formulas:	arphi	::=	$ au_1 = au_2 \hspace{.1in} \mid \hspace{.1in} eg$	$arphi ~\mid~ arphi_1 \wedge arphi_2 ~\mid~$	$arphi_1 ee arphi_2$

NB. This definition (although it does not allows nested universal modalities) is as expressive as the `standard' one

(Shehtman 99, Areces et. al 00): $Sat(S4_u, ALL) = Sat(S4_u, ALEK)$,

and this set is **PSPACE**-complete

(Aleksandrov spaces = quasi-ordered Kripke frames)

NB. $\operatorname{Sat}(\mathcal{S}_{4_u}, \operatorname{ALL}) \neq \operatorname{Sat}(\mathcal{S}_{4_u}, \mathbb{R}^n)$ (in contrast with \mathcal{S}_4)

Example:

 $(r_1 \neq \mathbf{0}) \land (r_2 \neq \mathbf{0}) \land (r_1 \cup r_2 = \mathbf{1}) \land (r_1^- \cap r_2 = \mathbf{0}) \land (r_1 \cap r_2^- = \mathbf{0})$ is satisfiable in a topological space T iff T is not connected

but $Sat(S4_u, \mathbb{R}^n) = Sat(S4_u, CON) = Sat(S4_u, CON \cap ALEK)$ and this set is **PSpace**-complete

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness = connectedness in the **undirected** graph (induced by the quasi-order)

Aleksandrov spaces = quasi-ordered Kripke frames connectedness = connectedness in the **undirected** graph (induced by the quasi-order)

Example: generating all numbers from **0** to $2^n - 1$:

• **0** and $2^n - 1$ are non-empty: $\overline{v_n} \cap \cdots \cap \overline{v_1} \neq \mathbf{0}$ $v_n \cap \cdots \cap v_1 \neq \mathbf{0}$ **7**

Example: generating all numbers from **0** to $2^n - 1$:

7 **•**

- 0 and $2^n 1$ are non-empty: $\overline{v_n} \cap \dots \cap \overline{v_1} \neq 0$ $v_n \cap \dots \cap v_1 \neq 0$
- the closure of m can share points only with m + 1, for $0 \le m < 2^n 1$: $(v_j \cap \overline{v_k})^- \subseteq v_j$, $(\overline{v_j} \cap \overline{v_k})^- \subseteq \overline{v_j}$, for $n \ge j > k \ge 1$ $(\overline{v_k} \cap v_{k-1} \cap \dots \cap v_1)^- \subseteq (v_k \cap \overline{v_i}) \cup (\overline{v_k} \cap v_i)$, for $n \ge k > i \ge 1$

0

Example: generating all numbers from **0** to $2^n - 1$:

- 0 and $2^n 1$ are non-empty: $\overline{v_n} \cap \cdots \cap \overline{v_1} \neq 0$ $v_n \cap \cdots \cap v_1 \neq 0$
- the closure of m can share points only with m + 1, for $0 \le m < 2^n 1$: $(v_j \cap \overline{v_k})^- \subseteq v_j$, $(\overline{v_j} \cap \overline{v_k})^- \subseteq \overline{v_j}$, for $n \ge j > k \ge 1$ $(\overline{v_k} \cap v_{k-1} \cap \dots \cap v_1)^- \subseteq (v_k \cap \overline{v_i}) \cup (\overline{v_k} \cap v_i)$, for $n \ge k > i \ge 1$
- $2^n 1$ is a closed set (and thus its closure shares no points with **0**): $(v_n \cap \dots \cap v_1)^- \subseteq v_n \cap \dots \cap v_1$

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 ~~ ~~ oldsymbol{c}(oldsymbol{ au}) ~~ ~~ aggregative arphi arphi ~~ arphi_1 \wedge arphi_2 ~~ ~~ arphi_1 \wedge arphi_2$

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 ~\mid~ oldsymbol{c}(oldsymbol{ au}) ~\mid~ eg arphi ~\mid~ arphi arphi \ arphi_1 \wedge arphi_2 ~\mid~ arphi_1 \wedge arphi_2$

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is PSPACE-complete

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 ~\mid~ oldsymbol{c}(oldsymbol{ au}) ~\mid~ eg arphi ~\mid~ arphi arphi ~\mid~ arphi_1 \wedge arphi_2 ~\mid~ arphi_1 \wedge arphi_2$

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is **PSPACE**-complete

Proof. Let $\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land (c(\sigma) \land (\sigma \neq \mathbf{0}))$ (conjunct of a full DNF)

1. guess a type (Hintikka set) t_{σ} containing σ and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch (all points with σ are to be connected to t_{σ})

$$\checkmark$$
 t_{σ}

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 \mid oldsymbol{c}(oldsymbol{ au}) \mid eg arphi \mid oldsymbol{arphi}_1 \wedge arphi_2 \mid oldsymbol{arphi}_1 \wedge arphi_2$

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is **PSPACE**-complete

Proof. Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^{m} (\tau_i \neq \mathbf{0}) \land (c(\sigma) \land (\sigma \neq \mathbf{0}))$$
 (conjunct of a full DNF)

- 1. guess a type (Hintikka set) \boldsymbol{t}_{σ} containing σ and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch (all points with σ are to be connected to \boldsymbol{t}_{σ})
- 2. for each *i*, guess a type t_{τ_i} containing τ_i and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 \mid oldsymbol{c}(oldsymbol{ au}) \mid eg arphi \mid oldsymbol{arphi}_1 \wedge arphi_2 \mid oldsymbol{arphi}_1 \wedge arphi_2$

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is **PSPACE**-complete

Proof. Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land (c(\sigma) \land (\sigma \neq \mathbf{0}))$$
 (conjunct of a full DNF)

1. guess a type (Hintikka set) \boldsymbol{t}_{σ} containing σ and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch (all points with σ are to be connected to \boldsymbol{t}_{σ})

2. for each *i*, guess a type t_{τ_i} containing τ_i and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch

path of length $2^{|\psi|}$

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms	
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 \mid oldsymbol{c}(oldsymbol{ au}) \mid eg arphi \mid oldsymbol{arphi}_1 \wedge arphi_2 \mid oldsymbol{arphi}_1 \wedge arphi_2$	

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is **PSPACE**-complete

Proof. Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land (c(\sigma) \land (\sigma \neq \mathbf{0}))$$
 (conjunct of a full DNF)

1. guess a type (Hintikka set) \boldsymbol{t}_{σ} containing σ and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch (all points with σ are to be connected to \boldsymbol{t}_{σ})

2. for each *i*, guess a type
$$t_{\tau_i}$$
 containing τ_i and $\overline{\tau_0}^\circ$
and expand the tableau branch by branch
- if σ appears in the tableau
then we construct a path to t_σ
(by "divide and conquer")

path of length $2^{|\psi|}$

$\mathcal{S}4_uc$ -terms:	au	::=	$\mathcal{S}4_u$ -terms	
$\mathcal{S}4_uc$ -formulas:	arphi	::=	$ au_1 = au_2 \mid oldsymbol{c}(oldsymbol{ au}) \mid eg arphi \mid oldsymbol{arphi}_1 \wedge arphi_2 \mid oldsymbol{arphi}_1 \wedge arphi_2$	

 \downarrow one occurrence of c

Theorem. Sat($S4_uc^1$, ALL) is **PSPACE**-complete

Proof. Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land (c(\sigma) \land (\sigma \neq \mathbf{0}))$$
 (conjunct of a full DNF)

1. guess a type (Hintikka set) \boldsymbol{t}_{σ} containing σ and $\overline{\tau_0}^{\circ}$ and expand the tableau branch by branch (all points with σ are to be connected to \boldsymbol{t}_{σ})

2. for each *i*, guess a type
$$t_{\tau_i}$$
 containing τ_i and $\overline{\tau_0}^\circ$
and expand the tableau branch by branch
- if σ appears in the tableau
then we construct a path to t_σ
(by "divide and conquer")

path of length $2^{|\psi|}$

Theorem. Sat($S4_uc$, ALL) is **EXPTIME**-complete

Theorem. Sat($S4_uc$, ALL) is **EXPTIME**-complete

Proof. (upper bound)

Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land \bigwedge_{i=1}^k (c(\sigma_i) \land (\sigma_i \neq \mathbf{0}))$$
 (conjunct of a full DNF)

The proof is by reduction to \mathcal{PDL} with converse and nominals (De Giacomo 95)

Let lpha and eta be atomic programs and ℓ_i a nominal, for each σ_i

• the $\mathcal{S}4$ -box is simulated by $[\alpha^*]$:

 au^\dagger is the result of replacing in au each sub-term $artheta^\circ$ with $[lpha^*]artheta$

• the universal box is simulated by $[\gamma]$, where $\gamma = (\beta \cup \beta^- \cup \alpha \cup \alpha^-)^*$

Theorem. Sat($S4_uc$, ALL) is **EXPTIME**-complete

Proof. (upper bound)

Let
$$\psi = (\tau_0 = \mathbf{0}) \land \bigwedge_{i=1}^m (\tau_i \neq \mathbf{0}) \land \bigwedge_{i=1}^k (c(\sigma_i) \land (\sigma_i \neq \mathbf{0}))$$
 (conjunct of a full DNF)

The proof is by reduction to \mathcal{PDL} with converse and nominals (De Giacomo 95)

Let lpha and eta be atomic programs and ℓ_i a nominal, for each σ_i

• the $\mathcal{S}4$ -box is simulated by $[\alpha^*]$:

 au^\dagger is the result of replacing in au each sub-term $artheta^\circ$ with $[lpha^*]artheta$

• the universal box is simulated by $[\gamma]$, where $\gamma = (\beta \cup \beta^- \cup \alpha \cup \alpha^-)^*$

$$\psi' = [\gamma] \neg au_0^{\dagger} \land \bigwedge_{i=1}^m \langle \gamma
angle au_i^{\dagger} \land \bigwedge_{i=1}^k \Big(\langle \gamma
angle (\ell_i \land \sigma_i^{\dagger}) \land [\gamma] (\sigma_i^{\dagger} \to \langle (lpha \cup lpha^-; \sigma_i^{\dagger}?)^*
angle \ell_i) \Big)$$

 ψ' is satisfiable iff ψ is satisfiable

 $\begin{array}{l} \textbf{RC}(T) \text{ is a Boolean algebra } (\textbf{RC}(T),+,\cdot,-,\emptyset,T), \\ \text{ where } \quad X+Y=X\cup Y, \quad X\cdot Y=(X\cap Y)^{\circ-} \quad \text{ and } \quad -X=(\overline{X})^{-} \end{array}$

 $\begin{array}{l} \textbf{RC}(T) \text{ is a Boolean algebra } (\textbf{RC}(T),+,\cdot,-,\emptyset,T), \\ \text{ where } \quad X+Y=X\cup Y, \quad X\cdot Y=(X\cap Y)^{\circ-} \quad \text{ and } \quad -X=(\overline{X})^{-} \end{array}$

$\mathcal B$ -terms:	au	::=	$r_i \mid - au$	$\mid \hspace{0.1 cm} au_1 + au_2 \hspace{0.1 cm} \mid \hspace{0.1 cm} au_1 \cdot au_2$	regular closed sets!
$\mathcal B$ -formulas:	arphi	::=	$ au_1 = au_2 \mid$	$ eg arphi \mid arphi_1 \wedge arphi_2 \mid arphi angle$	$_1 ee arphi_2$

 $\begin{array}{l} \textbf{RC}(T) \text{ is a Boolean algebra } (\textbf{RC}(T),+,\cdot,-,\emptyset,T), \\ \text{ where } \quad X+Y=X\cup Y, \quad X\cdot Y=(X\cap Y)^{\circ-} \quad \text{ and } \quad -X=(\overline{X})^{-} \end{array}$

$\mathcal B$ -terms:	au	::=	$r_i \mid - au$	$\mid au_1+ au_2$	$ au_1 \cdot au_2$	regular closed sets!
${\mathcal B}$ -formulas:	arphi	::=	$ au_1 = au_2 \mid$	$\neg arphi \mid arphi_1$ /	$\wedge arphi_2 \mid arphi_1$	$ee arphi_2$

 \mathcal{B} is a fragment of $\mathcal{S}4_u$: \mathcal{B} -terms $\xrightarrow{h} \mathcal{S}4_u$ -terms $h(r_i) = r_i^{\circ -}, \quad h(-\tau_1) = (\overline{h(\tau_1)})^-, \quad h(\tau_1 + \tau_2) = h(\tau_1) \cup h(\tau_2), \quad \dots$

 $\begin{array}{l} \textbf{RC}(T) \text{ is a Boolean algebra } (\textbf{RC}(T),+,\cdot,-,\emptyset,T), \\ \text{ where } \quad X+Y=X\cup Y, \quad X\cdot Y=(X\cap Y)^{\circ-} \quad \text{ and } \quad -X=(\overline{X})^{-} \end{array}$

B -terms:	au	::=	$r_i \mid - au$	$\mid au_1+ au_2 \mid au_1\cdot au_2$	regular closed sets!
${\mathcal B}$ -formulas:	arphi	::=	$ au_1 = au_2 \mid$	$ eg arphi \mid arphi_1 \wedge arphi_2 \mid arphi$	$arphi_1 ee arphi_2$

 \mathcal{B} is a fragment of $\mathcal{S}4_u$: \mathcal{B} -terms $\xrightarrow{h} \mathcal{S}4_u$ -terms $h(r_i) = r_i^{\circ -}, \quad h(-\tau_1) = (\overline{h(\tau_1)})^-, \quad h(\tau_1 + \tau_2) = h(\tau_1) \cup h(\tau_2), \quad \dots$

Theorem. Sat(\mathcal{B} , REG) = Sat(\mathcal{B} , CONREG) = Sat(\mathcal{B} , RC(\mathbb{R}^n)) and this set is NP-complete

Logic Colloquium Sofia 2.08.09

Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

\mathcal{RCC} -8-terms:	au ::=	r_i			regular closed sets!
\mathcal{RCC} -8-formul	as: $arphi$::=	$= R(au_1, au_2)$) $\neg \varphi$	$\mid arphi_1 \wedge arphi_2$	$\mid \hspace{0.1 cm} \varphi_{1} \lor \varphi_{2}$
DC(r,s)	EC(r,s)	PO(r,s)	${\sf EQ}(r,s)$	TPP(r,s)	NTPP(r,s)
s r	s r	s	s r	s r	s r

Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

(Bennett 94): \mathcal{RCC} -8 is a fragment of $\mathcal{S}4_u$: $r \cap s = \mathbf{0}$ $r \cdot s = \mathbf{0}$ $\neg (r \subseteq s)$ r = s $r \cap (-s) \neq \mathbf{0}$ $\neg (s \subseteq r)$ $r \cap s \neq \mathbf{0}$ $\neg (s \subseteq r)$ $\neg (s \subseteq r)$ $r \cdot s \neq \mathbf{0}$

Regular closed sets and RCC-8

(Egenhofer & Franzosa, 91) and (Randell, Rui & Cohn, 92):

(Bennett 94): \mathcal{RCC} -8 is a fragment of $\mathcal{S}4_u$: $r \subseteq s$ $r \subseteq s$ $r \cap (-s) = \mathbf{0}$ $r \cap s = \mathbf{0}$ $r \cdot s = \mathbf{0}$ $\neg (r \subseteq s)$ r = s $r \cap (-s) \neq \mathbf{0}$ $\neg (s \subseteq r)$ $r \cap s \neq \mathbf{0}$ $\neg (s \subseteq r)$ $\neg (s \subseteq r)$ $r \cdot s \neq \mathbf{0}$

(Renz 98): Sat(\mathcal{RCC} -8, REG) = Sat(\mathcal{RCC} -8, CONREG) = Sat(\mathcal{RCC} -8, RC(\mathbb{R}^n)) and this set is NP-complete Sat(\mathcal{RCC} -8c, REG) = Sat(\mathcal{RCC} -8c, RC(\mathbb{R}^n)), $n \ge 3$, and this set is NP-complete

Contact predicate

Contact predicate

 \mathcal{B} + contact predicate = \mathcal{C} = \mathcal{RCC} -8 + Boolean region terms (i.e., \mathcal{B} -terms)

Contact predicate

 \mathcal{B} + contact predicate = \mathcal{C} = \mathcal{RCC} -8 + Boolean region terms (i.e., \mathcal{B} -terms)

(Wolter & Zakharyaschev 00):

 $Sat(\mathcal{C}, REG)$ is NP-complete $Sat(\mathcal{C}, CONREG) = Sat(\mathcal{C}, RC(\mathbb{R}^n))$ and this set is PSPACE-complete

Theorem. Sat(Cc, REG) is **EXPTIME**-complete

 $\mathsf{Sat}(\mathcal{C}c,\mathsf{RC}(\mathbb{R}^n))$, $n\geq 2$, is <code>EXPTIME-hard</code>

<u>Proof.</u> Hardness by reduction of the global consequence relation for the modal logic **K**

 $\mathcal{B}c$ is a fragment of $\mathcal{C}c$ and the following formula is a $\mathcal{C}c$ -validity:

 $\mathcal{B}c$ is a fragment of $\mathcal{C}c$ and the following formula is a $\mathcal{C}c$ -validity:

$$igwedge_{i=1,2} igl(c(au_i) \wedge (au_i
eq m{0}) igr) o igl(c(au_1 + au_2) \leftrightarrow C(au_1, au_2) igr)$$

 $\mathcal{B}c$ is a fragment of $\mathcal{C}c$ and the following formula is a $\mathcal{C}c$ -validity:

$$igwedge_{i=1,2} igl(c(au_i) \wedge (au_i
eq m{0}) igr) o igl(c(au_1 + au_2) \leftrightarrow C(au_1, au_2) igr)$$

Given a Cc-formula φ , one can construct a $\mathcal{B}c$ -formula φ^* such that φ is satisfiable in a (connected) Aleksandrov space iff φ^* is satisfiable in a (connected) Aleksandrov space

 $\mathcal{B}c$ is a fragment of $\mathcal{C}c$ and the following formula is a $\mathcal{C}c$ -validity:

$$igwedge_{i=1,2} igl(c(au_i) \wedge (au_i
eq m{0}) igr) o igl(c(au_1 + au_2) \leftrightarrow C(au_1, au_2) igr)$$

Given a Cc-formula φ , one can construct a $\mathcal{B}c$ -formula φ^* such that φ is satisfiable in a (connected) Aleksandrov space iff

 $arphi^*$ is satisfiable in a (connected) Aleksandrov space

Theorem. Sat($\mathcal{B}c$, REG) is **EXPTIME**-complete

 $\mathsf{Sat}(\mathcal{B}c,\mathsf{RC}(\mathbb{R}^n)), n \geq 3$, is **EXPTIME**-hard

• satisfiable in \mathbb{R}^2 but not in \mathbb{R} :

$$\bigwedge_{1 \leq i \leq 3} c(r_i) \quad \wedge \bigwedge_{1 \leq i < j \leq 3} (r_i \cap r_j \neq \mathbf{0}) \quad \wedge \quad (r_1 \cap r_2 \cap r_3 = \mathbf{0})$$

• satisfiable in \mathbb{R}^2 but not in \mathbb{R} :

$$\bigwedge_{1 \leq i \leq 3} c(r_i) \quad \wedge \bigwedge_{1 \leq i < j \leq 3} (r_i \cap r_j \neq \mathbf{0}) \quad \wedge \quad (r_1 \cap r_2 \cap r_3 = \mathbf{0})$$

• satisfiable in \mathbb{R}^3 but not in \mathbb{R}^2 (non-planar graphs, e.g., K_5):

$$\bigwedge_{i \in \{j,k\}} (v_i \subseteq e_{j,k}^\circ) \ \land \ \bigwedge_{1 \le i \le 5} (v_i \neq \mathbf{0}) \ \land \bigwedge_{\{i,j\} \cap \{k,l\} = \emptyset} (e_{i,j} \cap e_{k,l} = \mathbf{0}) \ \land \ \bigwedge_{1 \le i < j \le 5} c(e_{i,j}^\circ) = 0$$

• satisfiable in \mathbb{R}^2 but not in \mathbb{R} :

$$\bigwedge_{1 \leq i \leq 3} c(r_i) \quad \wedge \bigwedge_{1 \leq i < j \leq 3} (r_i \cap r_j \neq \mathbf{0}) \quad \wedge \quad (r_1 \cap r_2 \cap r_3 = \mathbf{0})$$

• satisfiable in \mathbb{R}^3 but not in \mathbb{R}^2 (non-planar graphs, e.g., K_5):

$$\bigwedge_{i \in \{j,k\}} (v_i \subseteq e_{j,k}^{\circ}) \ \land \ \bigwedge_{1 \le i \le 5} (v_i \neq \mathbf{0}) \ \land \bigwedge_{\{i,j\} \cap \{k,l\} = \emptyset} (e_{i,j} \cap e_{k,l} = \mathbf{0}) \ \land \ \bigwedge_{1 \le i < j \le 5} c(e_{i,j}^{\circ}) = 0$$

• satisfiable in connected spaces (e.g., torus) but not in \mathbb{R}^n , for any $n \ge 1$:

$$(r_1 \cap r_2 = \mathbf{0}) \land \bigwedge_{i=1,2} ((r_i^- \subseteq r_i) \land c(\overline{r_i})) \land \neg c(\overline{r_1} \cap \overline{r_2})$$

• satisfiable in \mathbb{R}^2 but not in \mathbb{R} :

$$igwedge_{1\leq i\leq 3} c(r_i) \quad \wedge igwedge_{1\leq i< j\leq 3} (r_i\cap r_j
eq {f 0}) \quad \wedge \quad ig(r_1\cap r_2\cap r_3={f 0})$$

• satisfiable in \mathbb{R}^3 but not in \mathbb{R}^2 (non-planar graphs, e.g., K_5):

$$\bigwedge_{i \in \{j,k\}} (v_i \subseteq e_{j,k}^{\circ}) \ \land \ \bigwedge_{1 \le i \le 5} (v_i \neq \mathbf{0}) \ \land \bigwedge_{\{i,j\} \cap \{k,l\} = \emptyset} (e_{i,j} \cap e_{k,l} = \mathbf{0}) \ \land \ \bigwedge_{1 \le i < j \le 5} c(e_{i,j}^{\circ})$$

• satisfiable in connected spaces (e.g., torus) but not in \mathbb{R}^n , for any $n \ge 1$:

$$(r_1 \cap r_2 = \mathbf{0}) \land \bigwedge_{i=1,2} ((r_i^- \subseteq r_i) \land c(\overline{r_i})) \land \neg c(\overline{r_1} \cap \overline{r_2})$$

Theorem. Sat $(\mathcal{S}4_u c, \mathbb{R})$ is PSPACE-complete

<u>Proof.</u> Embedding into temporal logic with S and U over $(\mathbb{R}, <)$, which is PSpace-complete (Reynolds, 99)

Logic Colloquium Sofia 2.08.09

Summary of the results

language	Reg	ConReg	$egin{array}{c} RC(\mathbb{R}^n) \ n>2 \end{array}$	$RC(\mathbb{R}^2)$	$RC(\mathbb{R})$		
RCC-8	NP						
$\mathcal{RCC} ext{-}8c$	NP			NP	≤PSpace,≥NP		
B	NP						
$\mathcal{B}c$	EXPTIME	ExpTime	EXPTIME		NP		
С	NP	NP PSPACE					
$\mathcal{C}c$	EXPTIME	ExpTime	EXPTIME	EXPTIME	PS PACE		
	All	Con	\mathbb{R}^n , $n>2$	\mathbb{R}^2	R		
$\mathcal{S}4_u$	PS PACE	PSPACE					
$\mathcal{S}4_uc$	EXPTIME	Ε ΧΡΤΙΜΕ	>ExpTime	>ExpTime	PS PACE		

• Upper bounds for satisfiability over \mathbb{R}^n , n > 1, are not known

(even decidability)

- Component counting predicates $c^{\leq k}(\tau)$: NEXPTIME instead of EXPTIME
- k-contact relations $C^k(au_1,\ldots, au_k)$ do not increase complexity

 $\mathbb{R}^{1}: \mathcal{RCC}\text{-}8c\text{-}\text{formula satisfiable over } \mathbb{RC}(\mathbb{R}) \text{ but not over } \mathbb{RCP}(\mathbb{R})$ $(\mathbb{RCP}(\mathbb{R}^{n}) = \text{regular closed, semi-linear subsets of } \mathbb{R}^{n})$

 r_1 is connected and

any two of r_1, r_2, r_3, r_4 touch at their boundaries without overlapping:

$$c(r_1) \hspace{0.2cm} \wedge \bigwedge_{1 \leq i < j \leq 4} \mathsf{EC}(r_i,r_j)$$

 $\mathbb{R}^{1}: \mathcal{RCC}\text{-}8c\text{-}\text{formula satisfiable over } \mathbb{RC}(\mathbb{R}) \text{ but not over } \mathbb{RCP}(\mathbb{R})$ $(\mathbb{RCP}(\mathbb{R}^{n}) = \text{regular closed, semi-linear subsets of } \mathbb{R}^{n})$

 r_1 is connected and

any two of r_1, r_2, r_3, r_4 touch at their boundaries without overlapping:

$$c(r_1) \hspace{0.2cm} \wedge \bigwedge_{1 \leq i < j \leq 4} \mathsf{EC}(r_i,r_j)$$

 $\mathbb{R}^{1}: \mathcal{RCC}\text{-}8c\text{-}\text{formula satisfiable over } \mathbb{RC}(\mathbb{R}) \text{ but not over } \mathbb{RCP}(\mathbb{R})$ $(\mathbb{RCP}(\mathbb{R}^{n}) = \text{regular closed, semi-linear subsets of } \mathbb{R}^{n})$

 r_1 is connected and

any two of r_1, r_2, r_3, r_4 touch at their boundaries without overlapping:

$$c(r_1) \wedge \bigwedge_{1 \leq i < j \leq 4} \mathsf{EC}(r_i,r_j)$$
 r_2 r_1 r_3 r_4 r_3 r_4

 \mathbb{R}^2 : (Schaefer, Sedgwick & Štefankovič 03): Sat(\mathcal{RCC} -8, $\mathcal{D}(\mathbb{R}^2)$) is NP-complete $(\mathcal{D}(\mathbb{R}^2) = \text{closed disc-homeomorphs in } \mathbb{R}^2)$

Theorem. Sat(\mathcal{RCC} -8c, RC(\mathbb{R}^2)) and Sat(\mathcal{RCC} -8c, RCP(\mathbb{R}^2)) coincide, and are NP-complete

 $\mathbb{R}^{1}: \mathcal{RCC}\text{-}8c\text{-}\text{formula satisfiable over } \mathbb{RC}(\mathbb{R}) \text{ but not over } \mathbb{RCP}(\mathbb{R})$ $(\mathbb{RCP}(\mathbb{R}^{n}) = \text{regular closed, semi-linear subsets of } \mathbb{R}^{n})$

 r_1 is connected and

any two of r_1, r_2, r_3, r_4 touch at their boundaries without overlapping:

$$c(r_1) \wedge \bigwedge_{1 \leq i < j \leq 4} \mathsf{EC}(r_i, r_j)$$
 r_2 r_1 r_3 r_4 r_3 r_4

 \mathbb{R}^2 : (Schaefer, Sedgwick & Štefankovič 03): Sat(\mathcal{RCC} -8, $\mathcal{D}(\mathbb{R}^2)$) is NP-complete $(\mathcal{D}(\mathbb{R}^2) = \text{closed disc-homeomorphs in } \mathbb{R}^2)$

Theorem. Sat(\mathcal{RCC} -8c, RC(\mathbb{R}^2)) and Sat(\mathcal{RCC} -8c, RCP(\mathbb{R}^2)) coincide, and are NP-complete

language	$RC(\mathbb{R})$	$RCP(\mathbb{R})$	$RC(\mathbb{R}^2)$	$RCP(\mathbb{R}^2)$
$\mathcal{RCC} ext{-}8c$	<pre> Space, NP </pre>	NP	NP	
$\mathcal{B}c$	N	Ρ		
$\mathcal{C}c$	PS PACE	PS PACE	EXPTIME	≥ExpTime
	R	${\mathcal S}({\mathbb R})$	\mathbb{R}^2	$\mathcal{S}(\mathbb{R}^2)$
$\mathcal{S}4_uc$	PS PACE	PS PACE	EXPTIME	EXPTIME

References

[KPZ09] R. Kontchakov, I. Pratt-Hartmann and M. Zakharyaschev. *Topological logics over Euclidean spaces*. In Proceedings of Topology, Algebra and Categories in Logic, TACL 2009 (Amsterdam, July 7-11, 2009)

[KPWZ08] R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev. *Topology, connectedness, and modal logic.* In C. Areces and R. Goldblatt, editors, Advances in Modal Logic, vol. 7, pp. 151–176. College Publications, London, 2008

[SSS03] M. Schaefer, E. Sedgwick and D. Štefankovič. *Recognizing string graphs in NP*. Journal of Computer and System Sciences, 67:365–380, 2003

[WZ00] F. Wolter and M. Zakharyaschev. *Spatial reasoning in RCC-8 with Boolean region terms*. In W. Horn, editor, Proceedings of ECAI, pp. 244–248. IOS Press, 2000