Topological logics
 with connectedness predicates

Roman Kontchakov

School of Computer Science and Inf. Systems, Birkbeck College, London
http://www.dcs.bbk.ac.uk/~roman
joint work with

Ian Pratt-Hartmann, Frank Wolter and Michael Zakharyaschev

Topological logics

terms:

$$
\boldsymbol{\tau}: \quad:=r_{i} \left\lvert\, \begin{array}{llll|l|l|l|l|l}
& \mathbf{0} & \bar{\tau} & \tau_{1} \cap \tau_{2} & \tau_{1} \cup \tau_{2} & \tau^{\circ} & \tau^{-} & \ldots
\end{array}\right.
$$

formulas:

$$
\varphi::=\tau_{1}=\tau_{2} \quad\left|\quad \tau_{1} \subseteq \tau_{2} \quad\right| \quad c(\tau) \quad|\quad \neg \varphi \quad| \quad \varphi_{1} \wedge \varphi_{2} \quad \mid \quad \ldots
$$

Topological logics

terms: subsets of T

$$
\boldsymbol{\tau}::=r_{i} \underset{\text { empty set complement }}{\mid} \mathbf{0}|\bar{\tau}| \tau_{1} \cap \tau_{2} \mid
$$

$$
\text { topological model } \mathfrak{M}=\left(T,{ }^{\mathfrak{M}}\right)
$$

T a topological space
. \mathfrak{M} a valuation

formulas: true or false

$$
\begin{aligned}
\varphi::= & \tau_{1}=\tau_{2}\left|\tau_{1} \subseteq \tau_{2}\right| c(\tau)|\neg \varphi| \varphi_{1} \wedge \varphi_{2} \mid \ldots \\
\text { e.g., } \mathfrak{M} & \models \tau_{1}=\tau_{2} \\
\mathfrak{M} & \text { iff } \tau_{1}^{\mathfrak{M}}=c(\tau) \quad \text { iff } \tau_{2}^{\mathfrak{M}} \text { is connected }
\end{aligned}
$$

Topological logics

terms: subsets of T

$$
\boldsymbol{\tau}::=r_{i} \underset{\text { empty set complement }}{\mid} \mathbf{0}|\bar{\tau}| \tau_{1} \cap \tau_{2} \mid
$$

$$
\text { topological model } \mathfrak{M}=\left(T,{ }^{\mathfrak{M}}\right)
$$

$$
\boldsymbol{T} \text { a topological space }
$$

$$
. \mathfrak{M} \text { a valuation }
$$

formulas: true or false

$$
\varphi \quad::=\tau_{1}=\tau_{2} \quad\left|\quad \tau_{1} \subseteq \tau_{2} \quad\right| \quad c(\tau) \quad|\quad \neg \varphi \quad| \quad \varphi_{1} \wedge \varphi_{2} \quad \mid \quad \ldots
$$

$$
\text { e.g., } \mathfrak{M} \models \tau_{1}=\tau_{2} \quad \text { iff } \tau_{1}^{\mathfrak{M}}=\tau_{2}^{\mathfrak{M}}
$$

Examples:

$$
\mathfrak{M} \models c(\tau) \quad \text { iff } \quad \tau^{\mathfrak{M}} \text { is connected }
$$

$c\left(r_{1}\right) \wedge c\left(r_{2}\right) \wedge\left(r_{1} \cap r_{2} \neq \mathbf{0}\right) \rightarrow c\left(r_{1} \cup r_{2}\right)$ 'the union of two intersecting connected sets r_{1} and r_{2} is connected'

Topological logics

terms: subsets of T

$$
\boldsymbol{\tau}::=r_{i} \underset{\text { empty set complement }}{\mid} \mathbf{0}|\bar{\tau}| \tau_{1} \cap \tau_{2} \mid
$$

topological model $\mathfrak{M}=\left(T,{ }^{\mathfrak{M}}\right)$
T a topological space
. \mathfrak{M} a valuation
formulas: true or false

$$
\begin{aligned}
\varphi::= & \tau_{1}=\tau_{2} \quad\left|\tau_{1} \subseteq \tau_{2}\right| c(\tau)|\neg \varphi| \varphi_{1} \wedge \varphi_{2} \mid \ldots \\
& \text { e.g., } \mathfrak{M} \models \tau_{1}=\tau_{2} \\
\mathfrak{M} & \text { iff } \tau_{1}^{\mathfrak{M}}=c(\tau) \quad \text { iff } \tau_{2}^{\mathfrak{M}} \text { is connected }
\end{aligned}
$$

Examples:
$c\left(r_{1}\right) \wedge c\left(r_{2}\right) \wedge\left(r_{1} \cap r_{2} \neq \mathbf{0}\right) \rightarrow c\left(r_{1} \cup r_{2}\right)$ 'the union of two intersecting connected sets r_{1} and r_{2} is connected'
$c\left(r_{1}\right) \wedge\left(r_{1} \subseteq r_{2}\right) \wedge\left(r_{2} \subseteq r_{1}^{-}\right) \rightarrow c\left(r_{2}\right)$
'if r_{1} is a connected set, and r_{2} is sandwiched between r_{1} and its closure,
then r_{2} is also connected'

Topological logics

terms: subsets of T

$$
\boldsymbol{\tau} \quad::=\boldsymbol{r}_{i}|\underset{\text { empty set complement }}{\mid} \mathbf{0}| \overline{\boldsymbol{\tau}}\left|\boldsymbol{\tau}_{1} \cap \boldsymbol{\tau}_{2}\right|
$$

$$
\text { topological model } \mathfrak{M}=\left(T,{ }^{\mathfrak{M}}\right)
$$

$$
T \text { a topological space }
$$

. \mathfrak{M} a valuation

formulas: true or false

$$
\begin{aligned}
\varphi::= & \tau_{1}=\tau_{2} \quad\left|\quad \tau_{1} \subseteq \tau_{2}\right| c(\tau)|\neg \varphi| \varphi_{1} \wedge \varphi_{2} \mid \ldots \\
\text { e.g., } \mathfrak{M} & \models \tau_{1}=\tau_{2} \\
\mathfrak{M} & \text { iff } \tau_{1}^{\mathfrak{M}}=c(\tau) \quad \text { iff } \tau_{2}^{\mathfrak{M}} \text { is connected }
\end{aligned}
$$

Examples:

$c\left(r_{1}\right) \wedge c\left(r_{2}\right) \wedge\left(r_{1} \cap r_{2} \neq \mathbf{0}\right) \rightarrow c\left(r_{1} \cup r_{2}\right)$ 'the union of two intersecting connected sets r_{1} and r_{2} is connected'
$c\left(r_{1}\right) \wedge\left(r_{1} \subseteq r_{2}\right) \wedge\left(r_{2} \subseteq r_{1}^{-}\right) \rightarrow c\left(r_{2}\right)$
'if r_{1} is a connected set, and r_{2} is sandwiched between r_{1} and its closure, then r_{2} is also connected'

Let \mathcal{L} a language with functions \boldsymbol{F} and predicates \boldsymbol{P} and \mathcal{K} be a class of models
$\boldsymbol{\operatorname { S a t }}(\mathcal{L}, \mathcal{K})$ is the set of \mathcal{L}-formulas satisfiable in models over \mathcal{K}

$\mathcal{S} 4_{u}$ as a topological logic

$\mathcal{S} 4_{u}$ as a topological logic

NB. This definition (although it does not allows nested universal modalities)
is as expressive as the 'standard' one

$\mathcal{S} 4_{u}$ as a topological logic

NB. This definition (although it does not allows nested universal modalities)
is as expressive as the 'standard' one
(Shehtman 99, Areces et. al 00): $\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{AlL}\right)=\operatorname{Sat}\left(\mathcal{S} 4_{u}\right.$, Alek $)$, and this set is PSPACE-complete
(Aleksandrov spaces $=$ quasi-ordered Kripke frames)

$\mathcal{S} 4_{u}$ as a topological logic

NB. This definition (although it does not allows nested universal modalities) is as expressive as the 'standard' one
(Shehtman 99, Areces et. al 00): $\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{AlL}\right)=\operatorname{Sat}\left(\mathcal{S} 4_{u}, \operatorname{AlEK}\right)$, and this set is PSPACE-complete
(Aleksandrov spaces = quasi-ordered Kripke frames)
$\mathrm{NB} . \operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{AlL}\right) \neq \operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathbb{R}^{n}\right) \quad$ (in contrast with $\mathcal{S} 4$)
Example:
$\left(r_{1} \neq \mathbf{0}\right) \wedge\left(r_{2} \neq \mathbf{0}\right) \wedge\left(r_{1} \cup r_{2}=\mathbf{1}\right) \wedge\left(r_{1}^{-} \cap r_{2}=\mathbf{0}\right) \wedge\left(r_{1} \cap r_{2}^{-}=\mathbf{0}\right)$ is satisfiable in a topological space \boldsymbol{T} iff \boldsymbol{T} is not connected

$\mathcal{S} 4_{u}$ as a topological logic

NB. This definition (although it does not allows nested universal modalities)
is as expressive as the 'standard' one
(Shehtman 99, Areces et. al 00): $\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{AlL}\right)=\operatorname{Sat}\left(\mathcal{S} 4_{u}\right.$, Alek $)$,
and this set is PSPACE-complete
(Aleksandrov spaces $=$ quasi-ordered Kripke frames)
$\mathrm{NB} . \operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{AlL}\right) \neq \operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathbb{R}^{n}\right) \quad$ (in contrast with $\mathcal{S} 4$)
Example:
$\left(r_{1} \neq \mathbf{0}\right) \wedge\left(r_{2} \neq \mathbf{0}\right) \wedge\left(r_{1} \cup r_{2}=\mathbf{1}\right) \wedge\left(r_{1}^{-} \cap r_{2}=\mathbf{0}\right) \wedge\left(r_{1} \cap r_{2}^{-}=\mathbf{0}\right)$ is satisfiable in a topological space \boldsymbol{T} iff \boldsymbol{T} is not connected
but $\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathbb{R}^{n}\right)=\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{CON}\right)=\operatorname{Sat}\left(\mathcal{S} 4_{u}, \mathrm{CON} \cap \mathrm{ALEK}\right)$ and this set is PSPACE-complete

$\mathcal{S} 4_{u}$ over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames
connectedness $=$ connectedness in the undirected graph

$\mathcal{S} 4_{u}$ over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness $=$ connectedness in the undirected graph

Example: generating all numbers from 0 to $\mathbf{2}^{\boldsymbol{n}}-\mathbf{1}$:
${ }_{0} \mathrm{O}$

- $\mathbf{0}$ and $\mathbf{2}^{n}-\mathbf{1}$ are non-empty:

$$
\overline{v_{n}} \cap \cdots \cap \overline{v_{1}} \neq \mathbf{0} \quad v_{n} \cap \cdots \cap v_{1} \neq \mathbf{0}
$$

$\mathcal{S} 4_{u}$ over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness $=$ connectedness in the undirected graph

Example: generating all numbers from 0 to $\mathbf{2}^{\boldsymbol{n}}-\mathbf{1}$:
${ }_{0} \mathrm{O}$

- $\mathbf{0}$ and $2^{n}-1$ are non-empty:

$$
\overline{v_{n}} \cap \cdots \cap \overline{v_{1}} \neq \mathbf{0} \quad v_{n} \cap \cdots \cap v_{1} \neq \mathbf{0}
$$

- the closure of \boldsymbol{m} can share points only with $\boldsymbol{m}+\mathbf{1}$, for $\mathbf{0} \leq \boldsymbol{m}<\mathbf{2}^{n}-\mathbf{1}$:
$\left(\boldsymbol{v}_{j} \cap \overline{\boldsymbol{v}_{\boldsymbol{k}}}\right)^{-} \subseteq \boldsymbol{v}_{j}$,
$\left(\overline{\boldsymbol{v}_{j}} \cap \overline{\boldsymbol{v}_{\boldsymbol{k}}}\right)^{-} \subseteq \overline{\boldsymbol{v}_{\boldsymbol{j}}}$,
for $n \geq j>k \geq 1$
$\left(\overline{v_{k}} \cap v_{k-1} \cap \cdots \cap v_{1}\right)^{-} \subseteq\left(v_{k} \cap \overline{\boldsymbol{v}_{i}}\right) \cup\left(\overline{v_{k}} \cap v_{i}\right)$,
for $n \geq$
$k>i \geq 1$

$\mathcal{S} 4_{u}$ over connected topological spaces

Aleksandrov spaces = quasi-ordered Kripke frames

connectedness $=$ connectedness in the undirected graph

Example: generating all numbers from 0 to $\mathbf{2}^{n}-\mathbf{1}$:

- $\mathbf{0}$ and $\mathbf{2}^{n}-\mathbf{1}$ are non-empty:

$$
\overline{v_{n}} \cap \cdots \cap \overline{v_{1}} \neq \mathbf{0} \quad v_{n} \cap \cdots \cap v_{1} \neq \mathbf{0}
$$

- the closure of \boldsymbol{m} can share points only with $\boldsymbol{m}+\mathbf{1}$, for $\mathbf{0} \leq \boldsymbol{m}<\mathbf{2}^{n}-\mathbf{1}$:
$\left(\boldsymbol{v}_{j} \cap \overline{\boldsymbol{v}_{\boldsymbol{k}}}\right)^{-} \subseteq \boldsymbol{v}_{j}$,
$\left(\overline{\boldsymbol{v}_{j}} \cap \overline{\boldsymbol{v}_{\boldsymbol{k}}}\right)^{-} \subseteq \overline{\boldsymbol{v}_{\boldsymbol{j}}}$,
for $n \geq j>k \geq 1$ $\left(\overline{\boldsymbol{v}_{k}} \cap \boldsymbol{v}_{k-1} \cap \cdots \cap \boldsymbol{v}_{1}\right)^{-} \subseteq\left(\boldsymbol{v}_{k} \cap \overline{\boldsymbol{v}_{i}}\right) \cup\left(\overline{\boldsymbol{v}_{k}} \cap \boldsymbol{v}_{i}\right), \quad$ for $n \geq \quad k>i \geq 1$
- $\mathbf{2}^{\boldsymbol{n}} \mathbf{- 1}$ is a closed set (and thus its closure shares no points with $\mathbf{0}$):

$$
\left(v_{n} \cap \cdots \cap v_{1}\right)^{-} \subseteq v_{n} \cap \cdots \cap v_{1}
$$

$$
\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+\text { connectedness predicate }(1)
$$

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms						
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$

$$
\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+\text { connectedness predicate }(1)
$$

\downarrow one occurrence of c
Theorem. $\operatorname{Sat}\left(\mathcal{S}{ }_{u} c^{1}, \mathrm{ALL}\right)$ is PSPACE-complete

$\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+$ connectedness predicate (1)

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms						
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$

\downarrow one occurrence of c
Theorem. Sat $\left(\mathcal{S} 4_{u} c^{1}, \mathrm{ALL}\right)$ is PSPACE-complete
Proof. Let $\psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge(c(\sigma) \wedge(\sigma \neq \mathbf{0})) \quad$ (conjunct of a full DNF)

1. guess a type (Hintikka set) \boldsymbol{t}_{σ} containing σ and ${\overline{\boldsymbol{T}_{0}}}^{\circ}$ and expand the tableau branch by branch (all points with $\boldsymbol{\sigma}$ are to be connected to $\boldsymbol{t}_{\boldsymbol{\sigma}}$)

$\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+$ connectedness predicate (1)

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms							
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$	$\varphi_{1} \wedge \varphi_{2}$

\downarrow one occurrence of c
Theorem. Sat $\left(\mathcal{S} 4_{u} c^{1}, \mathrm{ALL}\right)$ is PSPACE-complete
Proof. Let $\psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge(\boldsymbol{c}(\sigma) \wedge(\boldsymbol{\sigma} \neq \mathbf{0})) \quad$ (conjunct of a full DNF)

1. guess a type (Hintikka set) $\boldsymbol{t}_{\boldsymbol{\sigma}}$ containing $\boldsymbol{\sigma}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch (all points with $\boldsymbol{\sigma}$ are to be connected to $\boldsymbol{t}_{\boldsymbol{\sigma}}$)
2. for each i, guess a type $\boldsymbol{t}_{\tau_{i}}$ containing $\boldsymbol{\tau}_{\boldsymbol{i}}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch

$\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+$ connectedness predicate (1)

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms						
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$

\downarrow one occurrence of c
Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} \boldsymbol{c}^{1}, \mathrm{ALL}\right)$ is PSPACE-complete
Proof. Let $\psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge(\boldsymbol{c}(\sigma) \wedge(\boldsymbol{\sigma} \neq \mathbf{0})) \quad$ (conjunct of a full DNF)

1. guess a type (Hintikka set) $\boldsymbol{t}_{\boldsymbol{\sigma}}$ containing $\boldsymbol{\sigma}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch (all points with $\boldsymbol{\sigma}$ are to be connected to $\boldsymbol{t}_{\boldsymbol{\sigma}}$)
2. for each i, guess a type $\boldsymbol{t}_{\tau_{i}}$ containing $\boldsymbol{\tau}_{i}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch

- if σ appears in the tableau then we construct a path to $\boldsymbol{t}_{\boldsymbol{\sigma}}$ (by "divide and conquer")

$\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+$ connectedness predicate (1)

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms						
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$

\downarrow one occurrence of c
Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} \boldsymbol{c}^{1}, \mathrm{ALL}\right)$ is PSPACE-complete
Proof. Let $\psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge(\boldsymbol{c}(\sigma) \wedge(\boldsymbol{\sigma} \neq \mathbf{0})) \quad$ (conjunct of a full DNF)

1. guess a type (Hintikka set) $\boldsymbol{t}_{\boldsymbol{\sigma}}$ containing $\boldsymbol{\sigma}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch (all points with $\boldsymbol{\sigma}$ are to be connected to $\boldsymbol{t}_{\boldsymbol{\sigma}}$)
2. for each \boldsymbol{i}, guess a type $\boldsymbol{t}_{\tau_{i}}$ containing $\boldsymbol{\tau}_{i}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch

- if σ appears in the tableau then we construct a path to $\boldsymbol{t}_{\boldsymbol{\sigma}}$ (by "divide and conquer")

$\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+$ connectedness predicate (1)

$\mathcal{S} 4_{u} \boldsymbol{c}$-ferms:	$\boldsymbol{\tau}$	$::=$	$\mathcal{S} 4_{u}$-terms						
$\mathcal{S} 4_{u} \boldsymbol{c}$-formulas:	$\boldsymbol{\varphi}$	$::=$	$\tau_{1}=\tau_{2}$	\mid	$\boldsymbol{c}(\boldsymbol{\tau})$	\mid	$\neg \varphi$	\mid	$\varphi_{1} \wedge \varphi_{2}$

\downarrow one occurrence of c
Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} \boldsymbol{c}^{1}, \mathrm{ALL}\right)$ is PSPACE-complete
Proof. Let $\psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge(\boldsymbol{c}(\sigma) \wedge(\boldsymbol{\sigma} \neq \mathbf{0})) \quad$ (conjunct of a full DNF)

1. guess a type (Hintikka set) $\boldsymbol{t}_{\boldsymbol{\sigma}}$ containing $\boldsymbol{\sigma}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch (all points with $\boldsymbol{\sigma}$ are to be connected to $\boldsymbol{t}_{\boldsymbol{\sigma}}$)
2. for each \boldsymbol{i}, guess a type $\boldsymbol{t}_{\tau_{i}}$ containing $\boldsymbol{\tau}_{i}$ and ${\overline{\boldsymbol{\tau}_{0}}}^{\circ}$ and expand the tableau branch by branch

- if σ appears in the tableau then we construct a path to $\boldsymbol{t}_{\boldsymbol{\sigma}}$ (by "divide and conquer")

$$
\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+\text { connectedness predicate }(2)
$$

Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} c\right.$, AlL) is ExpTime-complete

$$
\mathcal{S} 4_{u} c=\mathcal{S} 4_{u}+\text { connectedness predicate (2) }
$$

Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} c, \mathrm{AlL}\right)$ is ExpTime-complete
Proof. (upper bound)

$$
\text { Let } \psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge \bigwedge_{i=1}^{k}\left(c\left(\sigma_{i}\right) \wedge\left(\sigma_{i} \neq \mathbf{0}\right)\right) \quad \text { (conjunct of a full DNF) }
$$

The proof is by reduction to $\mathcal{P} \mathcal{D} \mathcal{L}$ with converse and nominals (De Giacomo 95)
Let α and β be atomic programs and ℓ_{i} a nominal, for each σ_{i}

- the $\mathcal{S} 4$-box is simulated by $\left[\alpha^{*}\right]$:
τ^{\dagger} is the result of replacing in $\boldsymbol{\tau}$ each sub-term ϑ° with $\left[\boldsymbol{\alpha}^{*}\right] \boldsymbol{\vartheta}$
- the universal box is simulated by $[\gamma]$, where $\gamma=\left(\beta \cup \beta^{-} \cup \alpha \cup \alpha^{-}\right)^{*}$

```
S }\mp@subsup{4}{u}{}c=\mathcal{S}\mp@subsup{4}{u}{}+\mathrm{ connectedness predicate (2)
```

Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} \boldsymbol{c}, \mathrm{AlL}\right)$ is ExpTime-complete
Proof. (upper bound)

$$
\text { Let } \psi=\left(\tau_{0}=\mathbf{0}\right) \wedge \bigwedge_{i=1}^{m}\left(\tau_{i} \neq \mathbf{0}\right) \wedge \bigwedge_{i=1}^{k}\left(c\left(\sigma_{i}\right) \wedge\left(\sigma_{i} \neq \mathbf{0}\right)\right) \quad \text { (conjunct of a full DNF) }
$$

The proof is by reduction to $\mathcal{P} \mathcal{D} \mathcal{L}$ with converse and nominals (De Giacomo 95)
Let α and β be atomic programs and ℓ_{i} a nominal, for each σ_{i}

- the $\mathcal{S} 4$-box is simulated by $\left[\alpha^{*}\right]$:
τ^{\dagger} is the result of replacing in τ each sub-term ϑ° with $\left[\boldsymbol{\alpha}^{*}\right] \boldsymbol{\vartheta}$
- the universal box is simulated by $[\gamma]$, where $\gamma=\left(\beta \cup \beta^{-} \cup \alpha \cup \alpha^{-}\right)^{*}$

$$
\psi^{\prime}=[\gamma] \neg \tau_{0}^{\dagger} \wedge \bigwedge_{i=1}^{m}\langle\gamma\rangle \tau_{i}^{\dagger} \wedge \bigwedge_{i=1}^{k}\left(\langle\gamma\rangle\left(\ell_{i} \wedge \sigma_{i}^{\dagger}\right) \wedge[\gamma]\left(\sigma_{i}^{\dagger} \rightarrow\left\langle\left(\alpha \cup \alpha^{-} ; \sigma_{i}^{\dagger} ?\right)^{*}\right\rangle \ell_{i}\right)\right)
$$

ψ^{\prime} is satisfiable iff ψ is satisfiable

Regular closed sets and \mathcal{B}

$\boldsymbol{X} \subseteq T$ is regular closed if $X=X^{\circ-}$

$$
\operatorname{RC}(T)=\text { sets of the form } X^{\circ-}, \text { for } \boldsymbol{X} \subseteq T
$$

$\boldsymbol{X}^{\circ-}$

Regular closed sets and \mathcal{B}

$\boldsymbol{X} \subseteq T$ is regular closed if $X=X^{\circ-}$

$$
\operatorname{RC}(\boldsymbol{T})=\text { sets of the form } X^{\circ-}, \text { for } \boldsymbol{X} \subseteq \boldsymbol{T}
$$

$\operatorname{RC}(\boldsymbol{T})$ is a Boolean algebra $(\operatorname{RC}(T),+, \cdot,-, \emptyset, T)$,

$$
\text { where } \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{X} \cup \boldsymbol{Y}, \quad \boldsymbol{X} \cdot \boldsymbol{Y}=(\boldsymbol{X} \cap \boldsymbol{Y})^{\circ-} \quad \text { and } \quad-\boldsymbol{X}=(\overline{\boldsymbol{X}})^{-}
$$

Regular closed sets and \mathcal{B}

$\boldsymbol{X} \subseteq \boldsymbol{T}$ is regular closed if $\boldsymbol{X}=\boldsymbol{X}^{\circ-}$

$$
\operatorname{RC}(\boldsymbol{T})=\text { sets of the form } X^{\circ-}, \text { for } \boldsymbol{X} \subseteq \boldsymbol{T}
$$

$\operatorname{RC}(T)$ is a Boolean algebra $(\operatorname{RC}(T),+, \cdot,-, \emptyset, T)$,

$$
\text { where } \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{X} \cup \boldsymbol{Y}, \quad \boldsymbol{X} \cdot \boldsymbol{Y}=(\boldsymbol{X} \cap \boldsymbol{Y})^{\circ-} \quad \text { and } \quad-\boldsymbol{X}=(\overline{\boldsymbol{X}})^{-}
$$

| \mathcal{B}-terms: | τ | $::=$ | r_{i} | $-\tau$ | $\tau_{1}+\tau_{2}$ | $\tau_{1} \cdot \tau_{2}$ | regular closed sets! |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathcal{B}-formulas: | φ | $::=$ | $\tau_{1}=\tau_{2}$ | \mid | $\neg \varphi$ | $\mid \varphi_{1} \wedge \varphi_{2}$ | $\varphi_{1} \vee \varphi_{2}$ |

Regular closed sets and \mathcal{B}

$X \subseteq T$ is regular closed if $X=X^{\circ-}$

$$
\operatorname{RC}(\boldsymbol{T})=\text { sets of the form } X^{\circ-}, \text { for } \boldsymbol{X} \subseteq \boldsymbol{T}
$$

$\operatorname{RC}(T)$ is a Boolean algebra $(\operatorname{RC}(T),+, \cdot,-, \emptyset, T)$,

$$
\text { where } \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{X} \cup \boldsymbol{Y}, \quad \boldsymbol{X} \cdot \boldsymbol{Y}=(\boldsymbol{X} \cap \boldsymbol{Y})^{\circ-} \quad \text { and } \quad-\boldsymbol{X}=(\overline{\boldsymbol{X}})^{-}
$$


```
\(\mathcal{B}\)-formulas: \(\varphi \quad::=\tau_{1}=\tau_{2} \quad|\quad \neg \varphi \quad| \quad \varphi_{1} \wedge \varphi_{2} \quad \mid \quad \varphi_{1} \vee \varphi_{2}\)
```

\mathcal{B} is a fragment of $\mathcal{S} 4_{u}: \quad \mathcal{B}$-terms $\xrightarrow{h} \mathcal{S} 4_{u}$-terms

$$
h\left(r_{i}\right)=r_{i}^{\circ-}, \quad h\left(-\tau_{1}\right)=\left(\overline{h\left(\tau_{1}\right)}\right)^{-}, \quad h\left(\tau_{1}+\tau_{2}\right)=h\left(\tau_{1}\right) \cup h\left(\tau_{2}\right), \quad \ldots
$$

Regular closed sets and \mathcal{B}

$X \subseteq T$ is regular closed if $X=X^{\circ-}$

$$
\operatorname{RC}(\boldsymbol{T})=\text { sets of the form } X^{\circ-}, \text { for } \boldsymbol{X} \subseteq \boldsymbol{T}
$$

$\operatorname{RC}(\boldsymbol{T})$ is a Boolean algebra $(\operatorname{RC}(T),+, \cdot,-, \emptyset, T)$,

$$
\text { where } \boldsymbol{X}+\boldsymbol{Y}=\boldsymbol{X} \cup \boldsymbol{Y}, \quad \boldsymbol{X} \cdot \boldsymbol{Y}=(\boldsymbol{X} \cap \boldsymbol{Y})^{\circ-} \quad \text { and } \quad-\boldsymbol{X}=(\overline{\boldsymbol{X}})^{-}
$$


```
\(\mathcal{B}\)-formulas: \(\varphi \quad::=\tau_{1}=\tau_{2} \quad|\quad \neg \varphi \quad| \quad \varphi_{1} \wedge \varphi_{2} \quad \mid \quad \varphi_{1} \vee \varphi_{2}\)
```

\mathcal{B} is a fragment of $\mathcal{S} 4_{u}: \quad \mathcal{B}$-terms $\xrightarrow{h} \mathcal{S} 4_{u}$-terms

$$
h\left(r_{i}\right)=r_{i}^{\circ-}, \quad h\left(-\tau_{1}\right)=\left(\overline{h\left(\tau_{1}\right)}\right)^{-}, \quad h\left(\tau_{1}+\tau_{2}\right)=h\left(\tau_{1}\right) \cup h\left(\tau_{2}\right), \quad \ldots
$$

Theorem. $\operatorname{Sat}(\mathcal{B}, \operatorname{Reg})=\operatorname{Sat}(\mathcal{B}, \operatorname{ConReg})=\operatorname{Sat}\left(\mathcal{B}, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right)$ no topology! and this set is NP-complete

Regular closed sets and RCC-8

(Egenhofer \& Franzosa, 91) and (Randell, Rui \& Cohn, 92):

Regular closed sets and RCC-8

(Egenhofer \& Franzosa, 91) and (Randell, Rui \& Cohn, 92):

(Bennett 94): $\mathcal{R C C}-8$ is a fragment of $\mathcal{S} 4_{u}$:

$$
\begin{array}{lllcc}
\boldsymbol{r} \cap s=\mathbf{0} & \boldsymbol{r} \cdot \boldsymbol{s}=\mathbf{0} & \neg(\boldsymbol{r} \subseteq \boldsymbol{s}) & \boldsymbol{r}=\boldsymbol{s} & \boldsymbol{r} \cap(-\boldsymbol{s}) \neq \mathbf{0} \\
& \boldsymbol{r} \cap \boldsymbol{s} \neq \mathbf{0} & \neg(s \subseteq \boldsymbol{r}) & \neg(s \subseteq \boldsymbol{s}) \\
& \boldsymbol{r} \cdot \boldsymbol{s} \neq \mathbf{0} & \neg(s \subseteq r) &
\end{array}
$$

Regular closed sets and RCC-8

(Egenhofer \& Franzosa, 91) and (Randell, Rui \& Cohn, 92):

| $\mathcal{R C C}$-8-terms: | τ | $::=$ | r_{i} | regular closed sets! | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathcal{R C C}$-8-formulas: | φ | $::=$ | $R\left(\tau_{1}, \tau_{2}\right)$ | \mid | $\neg \varphi$ | $\mid \varphi_{1} \wedge \varphi_{2}$ | $\mid \varphi_{1} \vee \varphi_{2}$ |

$\mathrm{DC}(r, s) \quad \mathrm{EC}(r, s) \quad \mathrm{PO}(r, s) \quad \mathrm{EQ}(r, s) \quad \operatorname{TPP}(r, s) \quad \operatorname{NTPP}(r, s)$

$$
\begin{array}{rllll}
\text { (Bennett 94): } & \mathcal{R C C} \text { - }-8 \text { is a fragment of } \mathcal{S} 4_{u}: & r \subseteq s & r \cap(-s)=\mathbf{0} \\
r \cap s=\mathbf{0} & r \cdot s=\mathbf{0} & \neg(r \subseteq s) & r=s & r \cap(-s) \neq \mathbf{0} \\
& r \cap s \neq \mathbf{0} & \neg(s \subseteq \boldsymbol{r}) & \neg(s \subseteq r) \\
& & r \cdot s \neq \mathbf{0} & \neg(s \subseteq r) &
\end{array}
$$

(Renz 98): $\operatorname{Sat}(\mathcal{R C C}-8, \operatorname{REG})=\operatorname{Sat}(\mathcal{R C C}-8, \operatorname{CONREG})=\operatorname{Sat}\left(\mathcal{R C C}-8, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right)$ and this set is NP-complete $\operatorname{Sat}(\mathcal{R C C}-8 c, \operatorname{REG})=\operatorname{Sat}\left(\mathcal{R C C}-8 c, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right), n \geq 3$, and this set is NP-complete

Contact predicate

Contact predicate

$\mathcal{B}+$ contact predicate $=\mathcal{C}=\mathcal{R C C}$ - $8+$ Boolean region terms (i.e., \mathcal{B}-terms)

Contact predicate

$\mathcal{B}+$ contact predicate $=\mathcal{C}=\mathcal{R C C}-8+$ Boolean region terms (i.e., \mathcal{B}-terms)
(Wolter \& Zakharyaschev 00):
$\operatorname{Sat}(\mathcal{C}, \operatorname{REG})$ is NP-complete
$\operatorname{Sat}(\mathcal{C}, \operatorname{CoNREG})=\operatorname{Sat}\left(\mathcal{C}, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right)$ and this set is PSPACE-complete
Theorem. $\operatorname{Sat}(\mathcal{C} c$, Reg $)$ is ExpTime-complete

$$
\operatorname{Sat}\left(\mathcal{C} c, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right), n \geq 2, \text { is ExPTIME-hard }
$$

Proof. Hardness by reduction of the global consequence relation for the modal logic K

Reduction from $\mathcal{C} c$ to $\mathcal{B} c$

$\mathcal{B} c$ is a fragment of $\mathcal{C} c$ and the following formula is a \mathcal{C}-validity:

Reduction from $\mathcal{C} c$ to $\mathcal{B} c$

$\mathcal{B} c$ is a fragment of $\mathcal{C} c$ and the following formula is a \mathcal{C}-validity:

$$
\bigwedge\left(c\left(\tau_{i}\right) \wedge\left(\tau_{i} \neq 0\right)\right) \rightarrow\left(c\left(\tau_{1}+\tau_{2}\right) \leftrightarrow \boldsymbol{C}\left(\tau_{1}, \boldsymbol{\tau}_{2}\right)\right)
$$

Reduction from $\mathcal{C} c$ to $\mathcal{B} c$

$\mathcal{B} c$ is a fragment of $\mathcal{C} c$ and the following formula is a \mathcal{C}-validity:

$$
\bigwedge\left(c\left(\tau_{i}\right) \wedge\left(\tau_{i} \neq 0\right)\right) \rightarrow\left(c\left(\tau_{1}+\tau_{2}\right) \leftrightarrow C\left(\tau_{1}, \tau_{2}\right)\right)
$$

Given a \mathcal{C} c-formula φ, one can construct a \mathfrak{B} c-formula φ^{*} such that φ is satisfiable in a (connected) Aleksandrov space iff
φ^{*} is satisfiable in a (connected) Aleksandrov space

Reduction from $\mathcal{C} c$ to $\mathcal{B} c$

$\mathcal{B} \boldsymbol{c}$ is a fragment of $\mathcal{C} c$ and the following formula is a $\mathcal{C} c$-validity:

$$
\bigwedge\left(c\left(\tau_{i}\right) \wedge\left(\tau_{i} \neq 0\right)\right) \rightarrow\left(c\left(\tau_{1}+\tau_{2}\right) \leftrightarrow C\left(\tau_{1}, \tau_{2}\right)\right)
$$

Given a \mathcal{C} c-formula φ, one can construct a $\mathcal{B} c$-formula φ^{*} such that φ is satisfiable in a (connected) Aleksandrov space iff
φ^{*} is satisfiable in a (connected) Aleksandrov space
Theorem. $\operatorname{Sat}(\mathcal{B} \boldsymbol{c}, \operatorname{Reg})$ is ExpTime-complete
$\operatorname{Sat}\left(\mathcal{B} c, \operatorname{RC}\left(\mathbb{R}^{n}\right)\right), n \geq 3$, is EXPTIME-hard

$\mathcal{S} 4_{u} c$ in Euclidean spaces

- satisfiable in \mathbb{R}^{2} but not in \mathbb{R} :

$$
\bigwedge_{1 \leq i \leq 3} c\left(r_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq 3}\left(r_{i} \cap r_{j} \neq \mathbf{0}\right) \quad \wedge \quad\left(r_{1} \cap r_{2} \cap r_{3}=\mathbf{0}\right)
$$

$\mathcal{S} 4_{u} c$ in Euclidean spaces

- satisfiable in \mathbb{R}^{2} but not in \mathbb{R} :

$$
\bigwedge_{1 \leq i \leq 3} c\left(r_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq 3}\left(r_{i} \cap r_{j} \neq \mathbf{0}\right) \quad \wedge \quad\left(r_{1} \cap r_{2} \cap r_{3}=\mathbf{0}\right)
$$

- satisfiable in \mathbb{R}^{3} but not in \mathbb{R}^{2} (non-planar graphs, e.g., \boldsymbol{K}_{5}):

$$
\bigwedge_{i \in\{j, k\}}\left(v_{i} \subseteq e_{j, k}^{\circ}\right) \wedge \bigwedge_{1 \leq i \leq 5}\left(v_{i} \neq \mathbf{0}\right) \wedge \bigwedge_{\{i, j\} \cap\{k, l\}=\emptyset}\left(e_{i, j} \cap e_{k, l}=\mathbf{0}\right) \wedge \bigwedge_{1 \leq i<j \leq 5} c\left(e_{i, j}^{0}\right)
$$

$\mathcal{S} 4_{u} c$ in Euclidean spaces

- satisfiable in \mathbb{R}^{2} but not in \mathbb{R} :

$$
\bigwedge_{1 \leq i \leq 3} c\left(r_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq 3}\left(r_{i} \cap r_{j} \neq \mathbf{0}\right) \quad \wedge \quad\left(r_{1} \cap r_{2} \cap r_{3}=\mathbf{0}\right)
$$

- satisfiable in \mathbb{R}^{3} but not in \mathbb{R}^{2} (non-planar graphs, e.g., \boldsymbol{K}_{5}):

$$
\bigwedge_{i \in\{j, k\}}\left(v_{i} \subseteq e_{j, k}^{0}\right) \wedge \bigwedge_{1 \leq i \leq 5}\left(v_{i} \neq \mathbf{0}\right) \wedge \bigwedge_{\{i, j\} \cap\{k, l\}=\emptyset}\left(e_{i, j} \cap e_{k, l}=\mathbf{0}\right) \wedge \bigwedge_{1 \leq i<j \leq 5} c\left(e_{i, j}^{0}\right)
$$

- satisfiable in connected spaces (e.g., torus) but not in \mathbb{R}^{n}, for any $n \geq 1$:

$$
\left(r_{1} \cap r_{2}=\mathbf{0}\right) \wedge \bigwedge_{i=1,2}\left(\left(r_{i}^{-} \subseteq r_{i}\right) \wedge c\left(\overline{r_{i}}\right)\right) \wedge \neg c\left(\overline{r_{1}} \cap \overline{r_{2}}\right)
$$

$\mathcal{S} 4_{u} c$ in Euclidean spaces

- satisfiable in \mathbb{R}^{2} but not in \mathbb{R} :

$$
\bigwedge_{1 \leq i \leq 3} c\left(r_{i}\right) \wedge \bigwedge_{1 \leq i<j \leq 3}\left(r_{i} \cap r_{j} \neq \mathbf{0}\right) \quad \wedge \quad\left(r_{1} \cap r_{2} \cap r_{3}=\mathbf{0}\right)
$$

- satisfiable in \mathbb{R}^{3} but not in $\mathbb{R}^{2} \quad$ (non-planar graphs, e.g., \boldsymbol{K}_{5}):

$$
\bigwedge_{i \in\{j, k\}}\left(v_{i} \subseteq e_{j, k}^{\circ}\right) \wedge \bigwedge_{1 \leq i \leq 5}\left(v_{i} \neq \mathbf{0}\right) \wedge \bigwedge_{\{i, j\} \cap\{k, l\}=\emptyset}\left(e_{i, j} \cap e_{k, l}=\mathbf{0}\right) \wedge \bigwedge_{1 \leq i<j \leq 5} c\left(e_{i, j}^{\circ}\right)
$$

- satisfiable in connected spaces (e.g., torus) but not in \mathbb{R}^{n}, for any $n \geq 1$:

$$
\left(r_{1} \cap r_{2}=\mathbf{0}\right) \wedge \bigwedge_{i=1,2}\left(\left(r_{i}^{-} \subseteq r_{i}\right) \wedge c\left(\overline{r_{i}}\right)\right) \wedge \neg c\left(\overline{r_{1}} \cap \overline{r_{2}}\right)
$$

Theorem. $\operatorname{Sat}\left(\mathcal{S} 4_{u} c, \mathbb{R}\right)$ is PSPACE-complete
Proof. Embedding into temporal logic with \mathcal{S} and \mathcal{U} over $(\mathbb{R},<)$, which is PSpace-complete (Reynolds, 99)

Summary of the results

language	REG	CONREG	$\begin{gathered} \operatorname{RC}\left(\mathbb{R}^{n}\right) \\ n>2 \end{gathered}$	$\mathrm{RC}\left(\mathbb{R}^{2}\right)$	$\mathrm{RC}(\mathbb{R})$
RCC-8	NP				
RCC-8c	NP			NP	\leq PSPACE, \geq NP
\mathcal{B}	NP				
$\mathcal{B} c$	EXPTıME	ExpTime	\geq EXPTIME	\geq PSPACE	NP
\mathcal{C}	NP	PSPACE			
$\mathcal{C} c$	EXPTIME	ExPTIME	\geq EXPTIME	\geq EXPTIME	PSPACE
	All	CON	$\mathbb{R}^{n}, n>2$	\mathbb{R}^{2}	\mathbb{R}
$\mathcal{S} 4_{u}$	PSPACE	PSPACE			
$\mathcal{S} 4{ }_{u} \mathrm{c}$	EXPTIME	EXPTIME	\geq EXPTIME	\geq EXPTIME	PSPACE

- Upper bounds for satisfiability over $\mathbb{R}^{n}, \boldsymbol{n}>1$, are not known (even decidability)
- Component counting predicates $\boldsymbol{c}^{\leq k}(\boldsymbol{\tau})$: NExpTime instead of ExpTime
- k-contact relations $C^{k}\left(\tau_{1}, \ldots, \tau_{k}\right)$ do not increase complexity

Infinite vs. finite number of components

$\mathbb{R}^{1}: \mathcal{R C C}$-8c-formula satisfiable over $\operatorname{RC}(\mathbb{R})$ but not over $\operatorname{RCP}(\mathbb{R})$
$\left(\mathbb{R C P}\left(\mathbb{R}^{\boldsymbol{n}}\right)\right.$ = regular closed, semi-linear subsets of $\left.\mathbb{R}^{n}\right)$
r_{1} is connected and
any two of $r_{1}, r_{2}, r_{3}, r_{4}$ touch at their boundaries without overlapping:
$c\left(r_{1}\right) \wedge \bigwedge_{1 \leq i<j \leq 4} \mathrm{EC}\left(r_{i}, r_{j}\right)$

Infinite vs. finite number of components

\mathbb{R}^{1} : $\mathcal{R C C}$-8c-formula satisfiable over $\operatorname{RC}(\mathbb{R})$ but not over $\operatorname{RCP}(\mathbb{R})$
$\left(\mathbb{R C P}\left(\mathbb{R}^{\boldsymbol{n}}\right)\right.$ = regular closed, semi-linear subsets of $\left.\mathbb{R}^{\boldsymbol{n}}\right)$
r_{1} is connected and
any two of $r_{1}, r_{2}, r_{3}, r_{4}$ touch at their boundaries without overlapping:

Infinite vs. finite number of components

\mathbb{R}^{1} : $\mathcal{R C C}$-8c-formula satisfiable over $\operatorname{RC}(\mathbb{R})$ but not over $\operatorname{RCP}(\mathbb{R})$ $\left(\mathbb{R C P}\left(\mathbb{R}^{\boldsymbol{n}}\right)\right.$ = regular closed, semi-linear subsets of $\left.\mathbb{R}^{\boldsymbol{n}}\right)$
r_{1} is connected and
any two of $r_{1}, r_{2}, r_{3}, r_{4}$ touch at their boundaries without overlapping:
$c\left(r_{1}\right) \wedge \bigwedge_{1 \leq i<j \leq 4} E C\left(r_{i}, r_{j}\right)$

\mathbb{R}^{2} :
(Schaefer, Sedgwick \& Štefankovič 03): $\operatorname{Sat}\left(\mathcal{R C C}-8, \mathcal{D}\left(\mathbb{R}^{2}\right)\right)$ is NP-complete ($\mathcal{D}\left(\mathbb{R}^{2}\right)$ = closed disc-homeomorphs in \mathbb{R}^{2})
Theorem. $\operatorname{Sat}\left(\mathcal{R C C}-8 c, \operatorname{RC}\left(\mathbb{R}^{2}\right)\right)$ and $\operatorname{Sat}\left(\mathcal{R C C}-8 c, \operatorname{RCP}\left(\mathbb{R}^{2}\right)\right)$ coincide, and are NP-complete

Infinite vs. finite number of components

\mathbb{R}^{1} : $\mathcal{R C C}$ - 8 c-formula satisfiable over $\mathbb{R C}(\mathbb{R})$ but not over $\operatorname{RCP}(\mathbb{R})$ $\left(\operatorname{RCP}\left(\mathbb{R}^{n}\right)=\right.$ regular closed, semi-linear subsets of $\left.\mathbb{R}^{n}\right)$
r_{1} is connected and
any two of $r_{1}, r_{2}, r_{3}, r_{4}$ touch at their boundaries without overlapping:
$c\left(r_{1}\right) \wedge \bigwedge_{1 \leq i<j \leq 4} \mathrm{EC}\left(r_{i}, r_{j}\right)$
r_{2}
r_{1}
 r_{3}
r_{4}
r_{3} r_{4}
\mathbb{R}^{2} :
(Schaefer, Sedgwick \& Štefankovič 03): $\operatorname{Sat}\left(\mathcal{R C C}-8, \mathcal{D}\left(\mathbb{R}^{2}\right)\right)$ is NP-complete ($\mathcal{D}\left(\mathbb{R}^{2}\right)$ = closed disc-homeomorphs in \mathbb{R}^{2})

Theorem. $\operatorname{Sat}\left(\mathcal{R C C}-8 c, \operatorname{RC}\left(\mathbb{R}^{2}\right)\right)$ and $\operatorname{Sat}\left(\mathcal{R C C}-8 c, \operatorname{RCP}\left(\mathbb{R}^{2}\right)\right)$ coincide, and are NP-complete

language	$\mathrm{RC}(\mathbb{R})$	$\mathrm{RCP}(\mathbb{R})$	$\mathrm{RC}\left(\mathbb{R}^{2}\right)$	$\mathrm{RCP}\left(\mathbb{R}^{2}\right)$
$\mathcal{R C C}-8 c$	\leq PSPACE, \geq NP	NP	NP	
$\mathcal{B} \boldsymbol{c} \boldsymbol{N P}$	NP		\geq PSPACE	\geq PSPACE
$\mathcal{C} c$	PSPACE	PSPACE	\geq EXPTIME	\geq EXPTIME
	\mathbb{R}	$\mathcal{S}(\mathbb{R})$	\mathbb{R}^{2}	$\mathcal{S}\left(\mathbb{R}^{2}\right)$
$\mathcal{S} 4_{u} \boldsymbol{c}$	PSPACE	PSPACE	\geq EXPTIME	\geq EXPTIME

References

[KPZO9] R. Kontchakov, I. Pratt-Hartmann and M. Zakharyaschev. Topological logics over Euclidean spaces. In Proceedings of Topology, Algebra and Categories in Logic, TACL 2009 (Amsterdam, July 7-11, 2009)
[KPWZO8] R. Kontchakov, I. Pratt-Hartmann, F. Wolter and M. Zakharyaschev. Topology, connectedness, and modal logic. In C. Areces and R. Goldblatt, editors, Advances in Modal Logic, vol. 7, pp. 151-176. College Publications, London, 2008
[SSSO3] M. Schaefer, E. Sedgwick and D. Štefankovič. Recognizing string graphs in NP. Journal of Computer and System Sciences, 67:365-380, 2003
[WZOO] F. Wolter and M. Zakharyaschev. Spatial reasoning in RCC-8 with Boolean region terms. In W. Horn, editor, Proceedings of ECAI, pp. 244-248. IOS Press, 2000

