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Introduction

Finite model theory. All structures in this talk will be finite!

Finite model theory of well-behaved classes of structures.Study restricted
classes of finite structures with nice properties.

• Results in descriptive complexity theory

• Preservation theorems

• Complexity of formula evaluation

on classes of finite structures which are tree-like, ...

Evaluation of formulas in finite structures. Let L be a logic such as first-order
or monadic second-order logic and let C be a class of finite structures.

MC(L, C)
Input: A := (A, σ) ∈ C and ϕ ∈ L[σ]

Problem: Decide A |= ϕ?
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Monadic Second-Order Logic
Note. For simplicity, we only consider logics over graphs here.

Monadic Second-Order Logic with Edge Set Quantification(MSO2).
First-Order Logic + Quantification over sets of edges or vertices

• Quantification over sets U of edges

Semantics. In G := (V ,E), ∃U/∀U range over sets U ⊆ E

• Quantification over sets X ,Y of vertices

• Quantification over individual vertices x , y

• x ∈ Y , (x , y) ∈ U, X ∩ Y = ∅, ...

• Boolean connectives

Example.The following formula expresses 3-COLOURABILITY

∃C1∃C2∃C3
︸ ︷︷ ︸

there are sets

C1, C2, C3

(

∀x
3∨

i=1

x ∈ Ci

︸ ︷︷ ︸

ev. node has a col.

∧ ∀x∀y
(
(x , y) ∈ E →

3∧

i=1

¬(x ∈ Ci ∧ y ∈ Ci)
)

︸ ︷︷ ︸

endpoints of edges have different colours

)
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Monadic Second-Order Logic

Hamiltonian cycles.
We can express that a graph G := (V ,E) has a Hamiltonian cycle.

There exists a set U ⊆ E of edges such that

• the graph induced by U is connected

• every vertex in G is incident to exactly two edges in U

Note. Here we need quantification over sets of edges, i.e. MSO2.

Guarded Second-Order Logic.What we are really using is guarded
second-order logic.

In this way, everything extends to general finite structures.
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Classical Complexity of First-Order Logic

Evaluation of first-order formulas on the class of all finite structures.

Input. Finite structure A := (A, σ) and formula ϕ ∈ FO[σ]
Problem. Decide A |= ϕ?

Naïve algorithm. For quantifiers, try all possibilities.

• Existential quantification: ϕ := ∃xψ

for all a ∈ A check whether (A, c 7→ a) |= ψ[x/c]

where c is a new constant symbol.

• Boolean connectives: easy

• Atomic formulae: direct look up in the structure

Running time and space:
time: O(|ϕ| · |A||ϕ|) exponential in the size of the formula

space: O(|ϕ| · log |A|)
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Classical Complexity of Evaluation Problems

Running time and space:
time: O(|ϕ| · |A||ϕ|) exponential in the size of the formula

space: O(|ϕ| · log |A|)

Theorem. (Vardi 82)

1. For every fixed formula ϕ ∈ FO, deciding whether A |= ϕ is in PTIME.

2. First-Order Model-Checking MC(FO,STRUCT) is PSPACE-complete
even for a fixed two element structure A.

Proof. Reduce satisfiability for Quantified Boolean Formulae to FO
Model-Checking on a two element structure.

3. MSO Model-Checking MC(FO,STRUCT) is PSPACE-complete.

Consequence.Classical complexity is not the right framework in which to
study the complexity of formula evaluation relative to a class C of
structures.
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Classical Complexity of Evaluation Problems

Words and Trees.Every property of finite or words or trees definable in
Monadic Second-Order Logic can be decided in linear time.

(Follows from work by Büchi, Rabin, ... on decidability of S1S, S2S)

Idea. Given a formula ϕ ∈ MSO2 and a finite tree T

1. translate ϕ into an equivalent tree-automaton Aϕ such that

T |= ϕ iff Aϕ accepts T

2. let A run on T .

Consequence.Deciding T |= ϕ can be done in time f (|ϕ|) + O(|T |)

where f : N → N is a computable function.

This motivates to study the parameterised complexity of formula evaluation.
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Parameterised Complexity of Evaluation Problems

Let L be a logic and C be a class of finite structures.

We look at parameterised evaluation problems of the form.

p-MC(L, C)
Input: Structure A ∈ C, ϕ ∈ L

Parameter: |ϕ|
Problem: Decide A |= ϕ

A problem is fixed-parameter tractable (fpt) if it can be solved in time

f (|ϕ|) · |A|O(1) f : N → N : computable function.

Definition. FPT class of problems that can be solved in time f (k) · nO(1).

Parameter: k := |ϕ| Input size: n := |A|
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Parameterised Complexity of First-Order Logic
Parameterised Complexity Theory.

• The class FPT is the parameterised analogue of PTIME.

• There is a hierarchy FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ W[4] ⊆ ... ⊆ AW[*]
which is believed to be strict.

• W[1] plays the rôle of NP as notion for intractability.

Recall. Every property of finite words or trees definable in Monadic
Second-Order Logic (MSO) can be decided in linear time (f (|ϕ|) + |T |).

Idea. Given a formula ϕ ∈ MSO2 and a finite tree T

1. translate ϕ into an equivalent tree-automaton Aϕ

2. let A run on T .

Consequence.MC(MSO2, T ) ∈ FPT, where T is class of finite trees.

Parameterised complexity of first-order logic.FO model-checking is complete
for AW[∗] and hence not in FPT. (unless the W-hierarchy collapses)
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Parameterised Complexity of Evaluation Problems
Complexity of First-Order and Monadic Second-Order Logic.

• MSO and FO-model checking is FPT on trees and words.

• It is not FPT in general.

Where is the border of tractability for first-order logic?
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Motivation: Algorithmic Meta-Theorems

Motivation from Logic.

• Such characterisations help understanding the complexity of logics.

• They yield tools to decide for an application area such as database
theory which logic might be useful and tractable in that area.

Algorithmic Motivation. Designing FPT algorithms for graph problems such
as DOMINATING SET on classes of graphs excluding a minor, ... is a well
studied problem in algorithmic graph theory.

Algorithmic Meta-Theorems. Every problem definable in first-order logic
can be decided efficiently on every graph class excluding a minor.

• Algorithmic Meta-Theorems explain tractability results for a wide
range of natural problems (all problems definable in the logic)

• They yield a simple way of proving that a problem is tractable on a
certain class of graphs.
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Outline

Where is the border of tractability for first-order logic?

Questions.

1. Identify classes C where MC(FO, C) or MC(MSO2, C) becomes FPT.

What are the most general classes of structures where first-order or
monadic second-order model-checking becomes FPT?

 Part I: Algorithmic Meta-Theorems

2. Can we exactly characterise the classes C of finite structures where
FO or MSO model-checking is FPT?

Find criteria for intractability with the aim of identifying a property P
so that MSO is FPT on a class C if, and only if, C has property P.

With today’s technology this will have to be subject to assumptions in
complexity theory. If PSPACE = PTIME then MSO is FPT in general.

 Part II: Intractability of MSO Model-Checking
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Part I: Algorithmic Meta-Theorems

STEPHAN KREUTZER ALGORITHMIC META-THEOREMS 13/47



Courcelle’s Theorem

Note. For simplicity we only consider classes of graphs.

The results go through for general structures and guarded second-order
logic using their Gaifman-graph.

Theorem. (Courcelle 1990)

For any class C of graphs of bounded tree-width

MC(MSO2, C)
Input: Graph G ∈ C, ϕ ∈ MSO2

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time for each fixed ϕ).
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Tree-Width

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width ≤ k if it can be covered by sub-graphs of size
≤ (k + 1) in a tree-like fashion.
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Tree-Width
Definition.

A tree-decomposition of a graph G is a pair T := (T , (Bt)t∈V T ) where

• T is a tree

• Bt ⊆ V (G) for all t ∈ V T

such that

1. for every edge {u, v} ∈ E(G) there is t ∈ V (T ) with u, v ∈ Bt

2. for all v ∈ V (G) the set {t : v ∈ Bt} is non-empty and connected.
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The width of T is max{|Bt | − 1 : t ∈ V (T )}

The tree-width tw(G) of G is the minimal width of any of its tree-dec.

Definition. A class C has bounded tree-width if there is a constant k ∈ N

such that tw(G) ≤ k for all G ∈ C.
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Examples

Example 1:Trees/Forests have tree-width 1

Proposition: Acyclic graphs are precisely the graphs of tree-width 1.
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Examples

5

6 7

1 2

3 4 8 9
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2,5,6 5,6,7

1,2,5 7,8,9

1,3 2,4
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Grids

Grids are examples for graphs with very high tree-width.

Lemma. The tree-width of the (n × n)-grid is n.

Excluded Grid Theorem. (Robertson, Seymour)
There is a computable function f : N → N such that all graphs of
tree-width ≥ f (k) contain a k × k-grid as a minor.

(4 × 5)-grid
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Courcelle’s Theorem
Theorem. (Courcelle 1990)

For any class C of graphs of bounded tree-width

MC(MSO2, C)
Input: Graph G ∈ C, ϕ ∈ MSO2

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time for each fixed ϕ).

Proof.

Theorem. (Bodlaender 1996)
There is an algorithm that, given a graph G constructs a
tree-decomposition of minimal width in time

O(2tw(G)3
|G|).

Hence, if C is a class of graphs of tree-width at most k then for all G ∈ C
we can compute an optimal tree-decomposition in linear time.
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Feferman-Vaught Style Theorems

Notation. Let G be a graph and v̄ be a tuple of vertices.

tpq(G, v̄): class of MSO2-formulae of quantifier-rank ≤ q true at v̄

Theorem.Let G,H be graphs. Let v̄ ∈ V (G) and w̄ ∈ V (H) and let
ū = V (G) ∩ V (H).

1. Then for all q ≥ 0,
tpq(G ∪ H, ūv̄ w̄) is determined by tpq(G, ūv̄) and tpq(ūw̄).

2. Furthermore, there is an algorithm that computes tpq(G ∪ H, ūv̄ w̄)
from tpq(G, ūv̄) and tpq(ūw̄).

STEPHAN KREUTZER ALGORITHMIC META-THEOREMS 22/47



Feferman-Vaught Style Theorems

Notation. Let G be a graph and v̄ be a tuple of vertices.

tpq(G, v̄): class of MSO2-formulae of quantifier-rank ≤ q true at v̄

Theorem.Let G,H be graphs. Let v̄ ∈ V (G) and w̄ ∈ V (H) and let
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2. Furthermore, there is an algorithm that computes tpq(G ∪ H, ūv̄ w̄)
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Courcelle’s Theorem: Algorithm

Given. Graph G of tree-width ≤ k MSO2-formula ϕ of q.r. q

1. Compute a tree-decomposition T := (T , (Bt)t∈V T ) of G

2. Compute the MSOq-type tp(Bt) for each leaf t

3. Bottom up, compute tpq(G[
⋃

t≺s Bs],Bt) for each t ∈ V (T )

MSOq-type of Bt in G[
⋃

t≺s Bs] (graph induced by
⋃

t≺s Bs)

4. Check whether ϕ ∈ tpq(G,Br ) at the root r of G

5

6 7

1 2

3 4 8 9
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Courcelle’s Theorem
Theorem: (Courcelle 1990)

For any class C of graphs of bounded tree-width

MC(MSO2, C)
Input: Graph G ∈ C, ϕ ∈ MSO

Parameter: |ϕ|
Problem: Decide G |= ϕ

is fixed-parameter tractable (linear time for each fixed ϕ).

What about the parameter dependence?

Theorem: (Frick, Grohe, 01)

1. Unless P=NP, there is no fpt-algorithm for MSO model checking on
trees with elementary parameter dependence.

2. Unless FPT=W[1], there is no fpt-algorithm for FO model checking
on trees with elementary parameter dependence.
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Further Algorithmic Meta-Theorems

Monadic Second-Order Logic.If we disallow quantification over sets of edges
then MSO1 is fixed-par. tractable on classes of bounded clique width.

For first-order logic. First-order model-checking is fixed-parameter tractable
on on all classes of graphs

• of bounded degree (Seese 96)

• which are planar or of bounded local tree-width (Frick, Grohe 01)

• exclude a fixed minor (Flum, Grohe 01)

• locally exclude a minor (Dawar, Grohe, K. 07)

Approximation. Every optimisation problem definable in first-order logic can
be approximated in polynomial time to any fixed constant factor on
H-minor free graphs.

(Dawar, Grohe, K., Schweikardt 06)
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Tools Used For First-Order Meta-Theorems

The main logical tool used for first-order meta-theorems are locality
theorems.

Theorem: (Gaifman, 1981)
Every first-order sentence ϕ ∈ FO is equivalent to a Boolean combination
of basic local sentences.

Basic local sentence:

ϕ := ∃x1 . . . ∃xm

∧

i 6=j

dist(xi , xj)> 2r ∧
k∧

i=1

ψ(xi).

where ψ is r -local in the Gaifman-graph.
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FO Model Checking: Decomposing a Graph

Given: C class of graphs excluding a minor H
Input: Graph G such that H 6� G and ϕ ∈ FO
Parameter: |ϕ|
Problem: G |= ϕ

G excludes H  Decomp. theorem, Robertson, Seymour
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FO Model Checking: Decomposing a Graph

In a block: Local tree-width (almost) bounded by a function λ

We can solve the problem in each block.
Extend this to the complete graph.
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Algorithmic Meta-Theorems
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Outline

Where is the border of tractability for first-order logic?

Questions.

1. Identify classes C where MC(FO, C) or MC(MSO2, C) becomes FPT.

What are the most general classes of structures where first-order or
monadic second-order model-checking becomes FPT?

 Part I: Algorithmic Meta-Theorems

2. Can we exactly characterise the classes C of finite structures where
FO or MSO model-checking is FPT?

Find criteria for intractability with the aim of identifying a property P
so that MSO is FPT on a class C if, and only if, C has property P.

With today’s technology this will have to be subject to assumptions in
complexity theory. If PSPACE = PTIME then MSO is FPT in general.

 Part II: Intractability of MSO Model-Checking
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Part II: Intractability of Monadic Second-Order Logic
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Digression: Satisfiability of MSO
Question. Is Courcelle’s theorem tight? Or can it be extended to classes of

unbounded tree-width?

A (fairly) precise characterisation of the satisfiability problem for MSO in
terms of tree-width has been given by Seese.

Let C be a class of finite graphs.

SAT(MSO, C)
Input: Formula ϕ ∈ MSO

Problem: Is there G ∈ C such that G |= ϕ?

Theorem. C class of finite graphs. (Seese 1996)

1. For all k ∈ N, SAT(MSO2, C) is decidable for C = {G : tw(G) ≤ k}.

2. If C has unbounded tree-width, then SAT(MSO2, C) is undecidable.

Aim at similar characterisation for model-checking.
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Limits of MSO Model-Checking

f (n)-bounded tree-width.
Let f : N → N be a non-decreasing function.

The tree-width of C is bounded by f (n) if tw(G) ≤ f (|G|) for all G ∈ C.

Examples.

• In Courcelle’s theorem f (n) := c is constant.

• f (n) := n is the maximal function that makes sense.

• We will look at f (n) := logc n for some small c.

We aim at results of the form:
If C is a class of graphs whose tree-width is not bounded by f (n) then
MC(MSO, C) is not fixed-parameter tractable.

Clearly, with today’s technology we cannot hope to prove this without
relating it to any complexity theoretical assumption.
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Complexity of MSO under Structural Restrictions

Definition. For non-decreasing f : N → N let Cf := {G : tw(G) ≤ f (|G|)}.

Theorem. (K. 09)
MC(MSO2, Cf ) is not FPT for all f : N → N such that f (n) > log16 n almost
everywhere, unless SAT can be solved in sub-exponential time.

Courcelle’s theorem. If C has bounded tree-width, then MC(MSO2, C) ∈ FPT.

The theorem follows from the following more general result on structures
with unary predicates but has a simper direct proof.

Theorem. (K. 09)
If C is a rich and constructible class of graphs closed under colourings
whose tree-width is not bounded by f (n) := log16 n then MC(MSO, C) is
not FPT unless SAT can be solved in sub-exponential time.
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Intractability on Coloured Graphs

Theorem. (K. 09)
If C is a rich and constructible class of graphs closed under colourings
whose tree-width is not bounded by f (n) := log16 n then MC(MSO2, C) is
not FPT unless SAT can be solved in sub-exponential time.

Classes closed under colourings.
Let Σ be a non-empty set of unary relation symbols, i.e. ”colours”, and let
σ ⊇ {E}∪̇Σ be a relational signature with at most binary predicates.

Definition. The Gaifman-graph of A := (A, σ) is the graph G(A) with

• vertex set A and

• an edge between a,b ∈ A if (a,b) ∈ RA for some R ∈ σ.

Definition. A class C of σ-structures is closed under colourings if whenever
A ∈ C and G(A) ∼= G(B) then B ∈ C.

Look at all σ-structures whose Gaifman graphs are in a class C′.
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Intractability of MSO Model-Checking
Theorem. (K. 09)

If C is a rich and constructive class of graphs closed under colourings
such that the tree-width of C is not bounded by f (n) := log16 n then
MC(MSO, C) is not fpt unless SAT can be solved in sub-exponential time.

Lemma. Every class is constructive. (K., Tazari)

Definition. Let C be a class of graphs of tree-width not bounded by f (n).
C is called rich (for f (n)) if there is a polynomial p(x) s.th.

• for each n > 0 there is G ∈ C of tree-width between n and p(n)
whose tree-width is not bounded by f (|G|) and

• such a graph can be computed in time 2o(n).

Remark. Richness is a technical condition needed for any reduction from
SAT as otherwise C has too large gaps with respect to large tree-width.

Proof idea of the theorem.
1. Show the result for coloured grids.
2. Extend this to the general case.
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Intractability on Coloured Grids
Theorem. Let GRID be the class of coloured grids.

MC(MSO,GRID) is not fixed-parameter tractable unless P=NP.

Proof. Let SAT be the satisfiability problem for propositional logic.

SAT is NP-complete but can be solved in quadratic time by an NTM M.

We reduce SAT to MC(MSO,G) as follows.
1. Given a propositional logic formula w of length n in CNF, construct

an n2 × n2-grid Gw and colour its bottom row by w .
2. Construct a formula ϕM ∈ MSO which guesses a colouring of the

grid and checks that this encodes a successful run of M on input w .
Then w ∈ SAT if, and only if, Gw |= ϕM.
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Intractability on Coloured Grids

Theorem. Let G be the class of coloured grids.
MC(MSO,G) is not fixed-parameter tractable unless P=NP.

Proof. We reduce SAT to MC(MSO,G) as follows.

1. Given a propositional logic formula w of length n in CNF, construct
an n2 × n2-grid Gw and colour its bottom row by w .

2. Construct a formula ϕM ∈ MSO which guesses a colouring of the
grid and checks that this encodes a successful run of M on input w .

Hence, if “Gw |= ϕM?” could be decided in time f (|ϕ|) · |Gw |
c then

“w ∈ SAT” could be decided in time

f (|ϕ|) · |Gw |
c = f (|ϕ|) · |w |2c = O(|w |2c),

as M and hence ϕM is fixed. �
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Intractability of MSO Model-Checking

Theorem.
If C is a rich and constructive class of graphs closed under colourings
such that the tree-width of C is not bounded by f (n) := log16 n then
MC(MSO, C) is not fpt unless SAT can be solved in sub-exponential time.

Grids. We know that MC(MSO2,GRIDS) is not FPT unless P=NP.

Idea. Use this to show the full result.

Define grids in graphs of large tree-width in MSO.
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Limits ofMSO Model-Checking
Theorem.

If C is a rich class of graphs closed under colourings such that the tree-width of C is not

bounded by log16 n then MC(MSO, C) is not fpt unless SAT can be solved in sub-exp. time.

First and wrong proof idea. Use the excluded grid theorem.

Theorem. (Robertson, Seymour)
There is a computable function f : N → N such that all graphs of
tree-width ≥ f (k) contain a k × k-grid (as a minor).

Proof Idea: given a propositional logic formula w construct Gw so that Gw

contains |w |2 × |w |2-grid and proceed as before.

Problem. f (n) := 202·k5
(Robertson, Seymour, Thomas)
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Grid-Like Minors

Theorem. (Reed, Wood)
Any graph G of tree-width ≥ k5 contains two sets P,Q of disjoint paths
such that their intersection graph I(P,Q) contains a Kk -minor.
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Pseudo-Walls

Theorem. There is a constant c ≥ 1 such that if G is a graph of tree-width
≥ c · k8 ·

√

log(k2) then G contains an MSO-definable Σ-coloured
pseudo-wall of order k .

Definition. A class C of graphs is constructible if these pseudo-walls can be
computed in polynomial time.
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Fixed-Parameter Intractability of MSO
Theorem. (K. 09)

If C is a rich and constructive class of graphs closed under colourings
such that the tree-width of C is not bounded by log16 n then MC(MSO, C)

is not fpt unless SAT can be solved in sub-exponential time.

Proof sketch. We reduce SAT to MC(MSO, C) as follows.

1. Given a propositional logic formula w of length n in 3-CNF, construct
Gw ∈ C containing a def. pseudo-wall and colour its bottom-row by w .

2. Construct a formula ϕM ∈ MSO which
• defines the pseudo-wall in Gw and
• guesses a colouring encoding a successful run of NTM M on input w .

Then w ∈ SAT if, and only if, Gw |= ϕM. Hence, if “Gw |= ϕM?” could be
decided in time f (|ϕ|) · |Gw |

c then “w ∈ SAT” could be decided in time

2r ·|w|
1
y

= 2o(|w|)

for some r > 0 and y > 1. �
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Fixed-Parameter Intractability of MSO

Theorem. (K. 09)
If C is a rich and constructive class of graphs closed under colourings
such that the tree-width of C is not bounded by log16 n then MC(MSO, C)

is not fpt unless SAT can be solved in sub-exponential time.

Definition. For f : N → N let Cf := {G : tw(G) ≤ f (|G|)}.

In Cf , colours can easily be eliminated.

Theorem. (Courcelle 90 + K. 09)

1. If C has bounded tree-width, then MC(MSO2, C) ∈ FPT.

2. MC(MSO2, Cf ) is not FPT for all f : N → N such that f (n) > log16 n
almost everywhere, unless SAT can be solved in sub-exp. time.
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Further Work and Open Problems

The main technical result relied on coloured graphs.

Question. Can we prove a similar result without colours on graphs closed
under sub-graphs?

Conjecture. (K., Tazari)
There is a constant c > 0, such that if C is a rich class of graphs closed
under taking sub-graphs whose tree-width is not bounded by logc n then
MC(MSO, C) is not FPT unless SAT is in sub-exp. time.

Open Problems.

1. Can we do something similar for MSO1?

2. More importantly, can we do something similar for first-order
model-checking?
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Conclusion
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Conclusion
Algorithmic Meta-Theorems.Results of the form: every problem definable in

MSO can be solved efficiently on graph classes of bounded tree-width.

First-order model-checking is FPT on

• planar graphs and classes of bounded local tree-width

• graph classes excluding a fixed minor

• graph classes locally excluding a minor.

Question. What are most general results we can prove?

Intractability results.

• MSO model-checking is not FPT on graph classes whose tree-width
grows essentially logarithmically (under some side conditions).

• Some very weak intractability results for first-order logic are known.

Question. Can we find a characterisation of tractability for first-order logic?

Satisfiability. Can we also characterise classes of finite structures with
decidable first-order theory?
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