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Introduction

S. Shelah introduced Abstract Elementary Classes (AECs) more
than 25 years ago as a general framework for classification in
non-elementary classes. More recently notable work has also been
done by Baldwin, Grossberg, Hyttinen, Kesälä, Kolesnikov,
Lessmann, and vanDieren, among others.

The first part of this talk is an introduction to the basic theory of
AECs. We then present recent results which connect AECs to
classical infinitary logics in unexpected ways.
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AEC Axioms

Definition (Shelah)

An Abstract Elementary Class is a pair (K,≺K) where K is a class
of L-structures for some vocabulary L and ≺K is a binary relation
on K (called K-substructure) satisfying the following axioms:

A1 (closure under isomorphism) If M∈ K and N ∼= M then
N ∈ K; if M≺K N and (N ,M) ∼= (N ′,M′) then
M′ ≺K N ′.

A2 (≺K is a strong substructure relation) If M≺K N then
M⊆ N ; if M∈ K then M≺K M; if M0 ≺K M1 and
M1 ≺K M2 then M0 ≺K M2.
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AEC Axioms Continued

A3 (existence of Löwenheim-Skolem number) There is an infinite
cardinal LS(K) such that for every M∈ K and for every
subset A ⊆M there is some M′ ≺K M such that A ⊆M′

and |M′| ≤ max{|A|, LS(K)}. We also assume LS(K) ≥ |L|.

A4 (closure under unions of ≺K chains) Let {Mi}i∈µ be a
≺K-chain.

(a)
⋃
i∈µ

Mi ∈ K

(b) For each j ∈ µ, Mj ≺K
⋃
i∈µ

Mi

(c) If Mi ≺K N for all i ∈ µ then
⋃
i∈µ

Mi ≺K N
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Axioms Continued

A5 (coherence) If M0, M1, N ∈ K, M0 ≺K N , M1 ≺K N and
M0 ⊆M1 then M0 ≺K M1.

Note that this definition is purely set-theoretic. In particular there
is no “syntax”, and neither K nor ≺K is assumed to be defined in
any way.
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Examples of AECs

1. If K = Mod(T ) for a first order theory T in a language L and
≺K is elementary substructure, then (K,≺K) is an AEC with
LS(K) = |L|.

2. If K = Mod(T ) for an ∀∃ first order theory of L and ≺K is
substructure, then (K,≺K) is an AEC with LS(K) = |L|.

Note that the same class K of structures may be an AEC under
many different substructure relations, and the resulting AECs may
have very different properties.
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Infinitary Logics

I Lω1,ω is the extension of first order logic allowing the
conjunction and disjunction of countable sets of formulas.

I L∞,ω allows the conjunction and disjunction of arbitrary sets
of formulas.

In each case we restrict to formulas with just finitely many free
variables.

I L∞,ω1 allows conjunctions and disjunctions of arbitrary sets of
formulas and the quantification of countable sequences of
variables.

I L∞,κ+ allows quantification of sequences of κ variables.
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Examples Continued

3. If K = Mod(σ) where σ ∈ Lω1,ω and ≺K is elementary
submodel with respect to a countable fragment containing σ
then (K,≺K) is an AEC with LS(K) = ω.

4. If K = Mod(σ) for σ ∈ Lω1,ω(Q) then (K,≺K) is an AEC
with LS(K) = ω1 for an appropriate choice of ≺K.

5. If K = Mod(σ) for σ ∈ Lκ+,ω then (K,≺K) is an AEC with
LS(K) = κ where ≺K is elementary submodel with respect to
a fragment containing σ.
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Non-Examples

6. If K = Mod(σ) for σ ∈ Lω1,ω1 and ≺K is elementary submodel
with respect to Lω1,ω1 then (K,≺K) is usually not an AEC
since Mod(σ) is usually not closed under unions of countable
Lω1,ω1-elementary chains.

7. Let L contain just the unary predicate P and let K be the
class of L-structures M in which P and its complement have
the same cardinality. Then there is no relation ≺K such that
(K,≺K) is an AEC.
Why won’t ≺K defined on K by M≺K N iff M⊆ N and
|PN − PM | = |(¬PN)− (¬PM)| work?
Coherence fails!
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K-embeddings

Although there are no formulas, Shelah gave a model-theoretic
definition of types for AECs satisfying amalgamation (over models).

Definition

1. Let M,N ∈ K. An embedding f of M into N is a
K-embedding if f (M) ≺K N .

2. (K,≺K) satisfies joint embedding (JEP) provided any two
models in K can be K-embedded into some model in K.

3. (K,≺K) satisfies the amalgamation property (AP) if for any
M,N0,N1 ∈ K and any K-embeddings f0 and f1 of M into
N0 and N1 there are M∗ ∈ K and embeddings g0 and g1 of
N0 and N1 into M∗ such that g0(f0(a)) = g1(f1(a)) for all
a ∈M.

David W. Kueker Abstract Elementary Classes
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Homogeneous Models

Theorem (Shelah)

Assume that (K,≺K) satisfies (AP), (JEP), and contains
arbitrarily large models. Then for every κ > LS(K) there is some
M∈ K such that

(a) Every N ∈ K of cardinality < κ can be K-embedded into M.

(b) any isomorphism between K-substructures of M of cardinality
< κ extends to an automorphism of M.

Such an M is strongly κ model homogeneous.

We abbreviate the hypothesis of (AP), (JEP), and arbitrarily large
models by (AP+).
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Galois Types

Assuming that (K,≺K) satisfies (AP+) we choose some
sufficiently large µ and fix a strongly µ model homogeneous
C ∈ K, called the Monster, and consider just models M such that
M≺K C and |M| < µ.

Definition (Shelah)

(AP+) Let M≺K C with |M| < µ and let a ∈ C.

(a) tpg (a/M), the Galois type of a over M, is the orbit of a
under all automorphisms of C fixing M pointwise.

(b) N ≺K C realizes tpg (a/M) if the orbit of a intersects N .

Use of the Monster is a convenience but is not necessary. Galois
types can be defined using just (AP).

We will also consider Galois types over sets.
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Galois Saturation

Galois saturated models may now be defined in the expected way.

Definition
(AP+) M∈ K is κ Galois saturated provided it realizes all Galois
types over subsets of cardinality < κ.

For κ > LS(K) it suffices to consider Galois types over
K-substructures of M of cardinality < κ.

Assuming (AP+) every M∈ K has a κ Galois saturated
K-extension, and any two κ Galois saturated models of cardinality
κ are isomorphic (if κ > LS(K) or cof (κ) = ω).
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Galois Stability

Definition
(AP+) (K,≺K) is κ Galois stable, where κ ≥ LS(K), provided
there are at most κ Galois types over every M∈ K of cardinality κ.

Theorem (Shelah)

(AP+) Assume that (K,≺K) is λ categorical where λ > LS(K).
Then (K,≺K) is κ Galois stable for all κ with LS(K) ≤ κ < λ.

Theorem (Shelah)

(AP+) Assume that (K,≺K) is κ Galois stable, where κ is regular
and ≥ LS(K). Then K contains a κ Galois saturated model of
cardinality κ.
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Motivating Questions

Questions
Let (K,≺K) be an AEC.

1. What closure properties must K and ≺K satisfy?

2. Is there a logic in which K and ≺K can be defined?
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Closure

Theorem
Let (K,≺K) be an AEC with LS(K) = κ.

(a) If M∈ K and M≡∞,κ+N then N ∈ K.

(b) If M∈ K and M≺∞,κ+N then M≺K N .
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Definability

Corollary

Assume that (K,≺K) is an AEC and LS(K) = κ. Suppose that K
contains at most λ models of cardinality λ for some λ with
λκ = λ. Then K = Mod(σ) for some σ ∈ L∞,κ+ .
If K contains at most λ models of cardinality ≤ λ then we can
take σ ∈ Lλ+,κ+ .

It suffices to assume just that K contains at most λ pairwise L∞,κ+

elementarily inequivalent models of cardinality λ (or ≤ λ).
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Can We Do Better?

Question
Does a smaller logic suffice?
In particular, does L∞,κ suffice?

The answer is No, regardless of κ.
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Example

Example

There is an AEC (K,≺K) with LS(K) = ω which is κ categorical
for all κ ≥ ω and satisfies (AP+) which is not closed under L∞,ω

elementary equivalence.

The vocabulary L contains just a unary predicate P.
K is the class of all M with |PM| = ω and |M− PM| ≥ ω.
M≺K N iff M⊆ N and PM = PN .

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Example

Example

There is an AEC (K,≺K) with LS(K) = ω which is κ categorical
for all κ ≥ ω and satisfies (AP+) which is not closed under L∞,ω

elementary equivalence.

The vocabulary L contains just a unary predicate P.
K is the class of all M with |PM| = ω and |M− PM| ≥ ω.

M≺K N iff M⊆ N and PM = PN .

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Example

Example

There is an AEC (K,≺K) with LS(K) = ω which is κ categorical
for all κ ≥ ω and satisfies (AP+) which is not closed under L∞,ω

elementary equivalence.

The vocabulary L contains just a unary predicate P.
K is the class of all M with |PM| = ω and |M− PM| ≥ ω.
M≺K N iff M⊆ N and PM = PN .

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Question

Question
What extra conditions on (K,≺K) with LS(K) = κ will guarantee
closure under L∞,κ elementary equivalence?

We answer this question for κ = ω and will discuss the general
case.
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Example Revisited

In the Example, M≺K N only holds if PM = PN . Thus whether
or not M≺K N depends on how the entire set PM is related to
the entire set PN — it is not a local property of M and N .

We need a condition which will imply that ≺K has a local
character.
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Finite Character

Finite character was introduced and studied by Hyttinen and
Kesälä. The definition we give is different but is equivalent to
theirs when (AP) holds.

Definition
An AEC (K,≺K) has finite character provided that M≺K N
whenever M,N ∈ K, M⊆ N , and for every tuple ā from M
there is a K embedding of M into N fixing ā.
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Examples

1. If T is a first order theory then (Mod(T ),≺) has finite
character.

2. If σ ∈ L∞,ω then (Mod(σ),≺∞,ω) has finite character.

3. The example given of an AEC not closed under L∞,ω

elementary equivalence does not have finite character.
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Closure

Theorem
Let (K,≺K) be an AEC with LS(K) = ω and having finite
character.

(a) If M∈ K and M≡∞,ωN then N ∈ K.

(b) If M∈ K and M≺∞,ω N then M≺K N .
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Definability

Corollary

Let (K,≺K) be an AEC with LS(K) = ω and having finite
character. Assume that K contains ≤ λ models of cardinality λ for
some λ ≥ ω. Then K = Mod(σ) for some σ ∈ L∞,ω.
If K contains ≤ λ models of cardinality ≤ λ then we can take
σ ∈ Lλ+,ω.

It suffices to assume just that K contains ≤ λ pairwise L∞,ω

elementarily inequivalent models of cardinality λ (or ≤ λ).
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Types and Saturation

We next look at similar closure and definability results for types
and saturation.

Many of these results do not require finite character.
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Closure for Galois Types

Theorem
Let (K,≺K) be an AEC with LS(K) = ω and satisfying (AP+).
Let M,N ∈ K, let ā and b̄ be tuples from M,N respectively.
Assume that (M, ā)≡∞,ω(N , b̄). Then tpg (ā/∅) = tpg (b̄/∅).

Note that we do not assume finite character.
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Definability of Galois Types

Corollary

Let (K,≺K) be an AEC with LS(K) = ω, satisfying (AP+) and
having ≤ λ models of cardinality λ for some infinite λ. Then for
every tuple ā from C there is ϕā ∈ L∞,ω such that for every
N ≺K C and every b̄ from N

N |= ϕā(b̄) iff tpg (ā/∅) = tpg (b̄/∅).
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ω Saturated Models

Lemma
Let (K,≺K) be an AEC satisfying (AP+). Let M∈ K. Then M
is ω Galois saturated iff
for every n ∈ ω, every a0, . . . , an−1 ∈M, every N ∈ K with
M≺K N , and every bn ∈ N there is some an ∈M such that
tpg (a0, . . . , an/∅) = tpg (a0, . . . , an−1, bn/∅).

Notation
(AP+) Kω is the class of all ω Galois saturated models in K.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Closure of Kω

Theorem
Let (K,≺K) be an AEC with LS(K) = ω satisfying (AP+).

(a) Let M∈ Kω and N ∈ K. Then N ∈ Kω iff M≡∞,ωN .

(b) Let M,N ∈ Kω and let ā, b̄ be tuples from M,N
respectively. Then tpg (ā/∅) = tpg (b̄/∅) iff
(M, ā)≡∞,ω(N , b̄).
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Characterizing Galois Types

Corollary

Let (K,≺K) be an AEC with LS(K) = ω satisfying (AP+). Let
M,N ∈ K and let ā and b̄ be tuples from M,N respectively.
Then tpg (ā/∅) = tpg (b̄/∅) iff (M′, ā)≡∞,ω(N ′, b̄) for some K
extensions M′ and N ′ of M,N respectively.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Finitary AECs

Definition (Hyttinen-Kesälä)

An AEC (K,≺K) is finitary if LS(K) = ω, it has finite character,
and it satisfies (AP+).
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Definability of Kω

Theorem
Let (K,≺K) be a finitary AEC.

(a) Kω = Mod(σ) for some complete σ ∈ L∞,ω. If there is a
countable model in Kω then σ ∈ Lω1,ω.

(b) If M,N ∈ Kω then M≺K N iff M≺∞,ω N . If there is a
countable model in Kω then ≺∞,ω can be replaced by
elementary submodel with respect to some countable
fragment of Lω1,ω.
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Categoricity

Lemma
Let (K,≺K) be an AEC with LS(K) = ω which satisfies (AP+)
and is λ categorical for some λ ≥ ω. Then every M∈ K with
|M| ≥ λ belongs to Kω, and Kω contains a countable model.
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Categoricity for Finitary AECs

Theorem
Let (K,≺K) be a finitary AEC which is λ categorical for some
λ > ω. Then there is a complete sentence σ ∈ Lω1,ω such that for
every M with |M| ≥ λ, M∈ K iff M |= σ.

Thus K is “almost” Lω1,ω axiomatizible.
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Kω as a Finitary AEC

Lemma
Let (K,≺K) be an AEC with LS(K) = ω satisfying (AP+).
Assume there is a countable model in Kω and that Kω satisfies the
following:

if M,N ∈ Kω and M≺∞,ω N then M≺K N .
Then (Kω,≺K) is a finitary AEC.
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Types Over Models

Definition
(AP+) Let M≺K C, ā ∈ C. We define tp∞,ω(ā/M) to be
{ϕ(x̄ , m̄) : ϕ ∈ L∞,ω, m̄ ∈M,C |= ϕ(ā, m̄)}.

Using a theorem of Hyttinen and Kesälä we conclude:

Theorem
Let (K,≺K) be finitary and ω Galois stable. Then for any
countable M∈ K and tuples ā, b̄, tpg (ā/M) = tpg (b̄/M) iff
tp∞,ω(ā/M) = tp∞,ω(b̄/M).

Adding the assumption of “tameness” removes the cardinality
restriction on M.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Arbitrary LS-number
Finite Character
Types and Saturation
More on Finite Character
Countable LS Number Without Finite Character

Types Over Models

Definition
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Theorem
Let (K,≺K) be finitary and ω Galois stable. Then for any
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Finite Character Revisited

We next look more closely at finite character.
What is the strength of this condition?
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Characterization of Finite Character

Theorem
Let (K,≺K) be an AEC with LS(K) = ω which satisfies (AP).
Then the following are equivalent:

(i) (K,≺K) has finite character.

(ii) For every M0,M,N ∈ K with M0 ≺K M and M0 ⊆ N , if
(M, ā)≡∞,ω(N , ā) for every tuple ā from M0 then
M0 ≺K N .
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Number of Finitary AECs

It is easy to see that there are exactly 22ω
AECs with

Löwenheim-Skolem number ω.

Theorem
There are exactly 22ω

finitary AECs.

Corollary

There are finitary AECs (K,≺K) where K is not axiomatizable by a
sentence of Lω1,ω.
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Finitary AEC Not Closed Under ≡ω1,ω

Example

There is a finitary AEC (K,≺K) such that K is not closed under
Lω1,ω elementary equivalence. In addition K contains exactly ω1

countable models, is κ Galois stable for all κ > ω, but is not ω
Galois stable.

K is the class of all structures M for L = {P, <} such that <M

holds only between elements of PM and (PM, <M) ∼= (α, <) for
some ordinal α ≤ ω1. M≺K N holds iff M⊆ N and (PM, <M)
is an initial segment of (PN , <N ). Since (ω1, <)≡ω1,ω(ω2, <) we
conclude that K is not closed under ≡ω1,ω.
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Questions

I If (K,≺K) is finitary must K = Mod(σ) for some σ ∈ L∞,ω?

I If (K,≺K) is finitary and λ categorical for some λ > ω must
K = Mod(σ) for some σ ∈ Lω1,ω?
This will be true for λ = ω1 provided K contains only
countably many countable models.
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Finite Character When LS(K) > ω

Example (G. Johnson)

For every regular κ > ω there is an AEC (K,≺K) with LS(K) = κ,
satisfying (AP+) and having finite character such that K is not
closed under L∞,κ elementary equivalence.

Theorem (G. Johnson)

Let (K,≺K) be an AEC having finite character and with
LS(K) = κ where cof (κ) = ω.

(a) If M∈ K and M≡∞,κN then N ∈ K.

(b) If M∈ K and M≺∞,κ N then M≺K N .

Many of the other results using finite character also generalize
from ω to cofinality ω.
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LS(K) = ω Without Finite Character

We next investigate in more detail AECs with LS(K) = ω which do
not have finite character.
In particular, we obtain stronger closure properties than hold for
AECs with uncountable Löwenheim-Skolem number.
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Closure Revisited

Recall the following special case of the first closure result.

Theorem
Let (K,≺K) be an AEC with LS(K) = ω.

(a) If M∈ K and M≡∞,ω1N then N ∈ K.

(b) If M,N ∈ K and M≺∞,ω1 N then M≺K N .

But these results require only a small fragment of L∞,ω1 .
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Closure With Respect To L∗∞,ω

Definition
L∗∞,ω is defined like L∞,ω except that formulas with ω many free
variables are allowed. M≺∗∞,ωN is defined using formulas of L∗∞,ω.

Theorem
Let (K,≺K) be an AEC with LS(K) = ω.

(a) Let M∈ K. Assume that for every ϕ(x̄ , ȳ) ∈ L∗∞,ω if
M |= ∀x̄∃ȳϕ(x̄ , ȳ) then N |= ∀x̄∃ȳϕ(x̄ , ȳ). Then N ∈ K.

(b) If M,N ∈ K and M≺∗∞,ωN then M≺K N .
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Categoricity

Theorem
Let (K,≺K) be an AEC with LS(K) = ω satisfying (AP+).
Assume that (K,≺K) is λ categorical for some λ with cof (λ) > ω.
Then there is a complete σ ∈ L∞,ω1 such that K and Mod(σ)
contain precisely the same models of cardinality ≥ λ.
Mod(σ) = Kω1 contains a unique model of cardinality ω1.

In particular, if (K,≺K) is ω1 categorical then Mod(σ) is the class
of all uncountable models in K.
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Free Groups

The following is a special case of a more general result.

Theorem
Let (K,≺K) be an AEC with LS(K) = ω. Assume that K contains
every free group. Then K contains every ω1 free group (= group
all of whose countable subgroups are free).
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Relative Closure Under ≡∞,ω

Theorem
Let (K,≺K) be an AEC with LS(K) = ω. Let M0,M,N ∈ K
with M0 ≺K M. Let N0 ⊆ N and assume that
(M,M0)≡∞,ω(N ,N0). Then N0 ∈ K and N0 ≺K N .
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Question

Let (K,≺K) be an AEC with LS(K) = ω which does not have
finite character. Is it possible for either or both of the following
closure conditions to hold?

(a) If M∈ K and M≡∞,ωN then N ∈ K.

(b) If M,N ∈ K and M≺∞,ω N then M≺K N .
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Some Proofs

We outline proofs of the following closure results.

Theorem
Let (K,≺K) be an AEC with LS(K) = ω.

(a) K is closed under ≡∞,ω1 .

(b) If (K,≺K) has finite character then K is closed under ≡∞,ω.

The main tool is countable approximations.
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Countable Approximations

For any L structure M and any countable set s we define the
countable approximation Ms as the substructure of M generated
by M∩ s.

For any set C we define a countably complete filter D(C ) on
Pω1(C ) (=the set of countable subsets of C ) as the set of all
X ⊆ Pω1(C ) which contain some closed unbounded set (where
closed means closed under unions of countable chains, and
unbounded means contains an extension of every s ∈ Pω1(C )).
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Countable Approximations

For any L structure M and any countable set s we define the
countable approximation Ms as the substructure of M generated
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Almost All Countable s

Given one or more structures to be approximated we choose some
set C which contains the universes of each structure, and we say
that a property of their approximations holds for almost all
countable s, abbreviated a.e., provided it holds for all s in some
X ∈ D(C ).

For example:

Theorem
M≡∞,ωN iff Ms ∼= N s a.e.
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The Game G(X )

For X ⊆ Pω1(C ) the game G(X ) is defined as follows: at stage n
player I chooses some a2n ∈ C and player II responds by choosing
some a2n+1 ∈ C . Player II wins if s = {an : n ∈ ω} ∈ X .

Theorem
Player II has a winning strategy in G(X ) iff X ∈ D(C ).
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Countable Approximations and ≺K

Lemma
Let (K,≺K) be an AEC with LS(K) = ω.

(a) If M∈ K then Ms ≺K M a.e.

(b) If M∈ K and M0 ⊆M is countable then M0 ≺K M iff
M0 ≺K Ms a.e.

Proof

(a) {s ∈ Pω1(M) : Ms ≺K M} is closed, by the Chains axiom,
and unbounded, by LS(K) = ω.

(b) If M0 ≺K M then M0 ⊆Ms a.e., hence M0 ≺K Ms a.e.
by (a) and Coherence.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Background
Countable Approximations and AECs
References

Countable Approximations and ≺K

Lemma
Let (K,≺K) be an AEC with LS(K) = ω.

(a) If M∈ K then Ms ≺K M a.e.

(b) If M∈ K and M0 ⊆M is countable then M0 ≺K M iff
M0 ≺K Ms a.e.

Proof

(a) {s ∈ Pω1(M) : Ms ≺K M} is closed, by the Chains axiom,
and unbounded, by LS(K) = ω.

(b) If M0 ≺K M then M0 ⊆Ms a.e., hence M0 ≺K Ms a.e.
by (a) and Coherence.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Background
Countable Approximations and AECs
References

The Main Lemma

Main Lemma
Let (K,≺K) be an AEC with LS(K) = ω. Let M∈ K and let
M0 ≺K M be countable. Let ā be an ω sequence listing the
elements of M0. Suppose that (M, ā)≡∗∞,ω(N , b̄) for some N
and b̄. Then b̄ lists the elements of some N0 with N0 ≺K N s a.e.

Proof (Outline)

Let X = {s ∈ Pω1(M) : M0 ≺K Ms ≺K M}, and let
Y = {s ∈ Pω1(N ) : N0 ≺K N s}. We use player II’s winning
strategy in G(X ) and the back and forth properties of ≡∗∞,ω to
show that II has a winning strategy in G(Y ).
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The Main Lemma

Main Lemma
Let (K,≺K) be an AEC with LS(K) = ω. Let M∈ K and let
M0 ≺K M be countable. Let ā be an ω sequence listing the
elements of M0. Suppose that (M, ā)≡∗∞,ω(N , b̄) for some N
and b̄. Then b̄ lists the elements of some N0 with N0 ≺K N s a.e.

Proof (Outline)

Let X = {s ∈ Pω1(M) : M0 ≺K Ms ≺K M}, and let
Y = {s ∈ Pω1(N ) : N0 ≺K N s}. We use player II’s winning
strategy in G(X ) and the back and forth properties of ≡∗∞,ω to
show that II has a winning strategy in G(Y ).
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The Theorem in the General Case

Theorem
Let (K,≺K) be an AEC with LS(K) = ω. Let M∈ K and assume
M≡∞,ω1N . Then every countable subset of N is contained in
some N0 such that N0 ≺K N s a.e. Hence N ∈ K since it is the
union of a family of countable models in K directed under ≺K.

Proof (Outline)

Let B0 ⊆ N be countable. We find ω sequences ā listing the
elements of some M0 ≺K M and b̄ listing the elements of some
N0 containing B0 such that (M, ā)≡∗∞,ω1

(N , b̄). By the Main
Lemma we conclude that N0 ≺K N s a.e.
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Theorem
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Main Lemma for Finite Character Case

Main Lemma
Let (K,≺K) be an AEC with LS(K) = ω having finite character.
Let M0 ≺K M be countable. Let ā be an ω sequence listing the
elements of M0. Suppose that (M, ā)≡∞,ω(N , b̄) for some N
and b̄. Then b̄ lists the elements of some N0 with N0 ≺K N S a.e.

Proof (Outline)

For each n ∈ ω let Yn = {s : there is a K embedding of N0 into
N s fixing b0, . . . , bn}. We show II has a winning strategy in every
G(Yn) as before. Therefore Y =

⋂
Yn ∈ D(N ) by countable

completeness, and N0 ≺K N s for all s ∈ Y by finite character.
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Theorem in the Finite Character Case

Theorem
Let (K,≺K) be an AEC with LS(K) = ω and having finite
character. Let M∈ K and assume M≡∞,ωN . Then every
countable subset of N is contained in some N0 such that
N0 ≺K N s a.e. Hence N ∈ K since it is the union of a family of
countable models in K directed under ≺K.
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A Strong Closure Property

Definition
A class K is closed provided that M∈ K iff Ms ∈ K a.e.

Facts

1. If σ ∈ Lω1,ω then Mod(σ) is closed.

2. If K is closed then K is closed under ≡∞,ω.

3. If (K,≺K) is an AEC with LS(K) = ω then M∈ K implies
Ms ∈ K a.e.

4. If K is closed it is determined completely by the collection of
countable models in K.
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Question and Lemma

Question
What conditions on an AEC (K,≺K) with LS(K) = ω will imply
that K is closed? In particular if (K,≺K) is finitary and λ
categorical for some uncountable λ must K be closed?

Lemma
Let (K,≺K) be an AEC with LS(K) = ω. Assume that M≺L∗ N
implies M≺K N for all M,N ∈ K for some countable fragment
L∗ of Lω1,ω. Then K is closed.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Background
Countable Approximations and AECs
References

Question and Lemma

Question
What conditions on an AEC (K,≺K) with LS(K) = ω will imply
that K is closed? In particular if (K,≺K) is finitary and λ
categorical for some uncountable λ must K be closed?

Lemma
Let (K,≺K) be an AEC with LS(K) = ω. Assume that M≺L∗ N
implies M≺K N for all M,N ∈ K for some countable fragment
L∗ of Lω1,ω. Then K is closed.

David W. Kueker Abstract Elementary Classes



Outline
Introduction to AECs

AECs and Infinitary Logics
Proofs

Background
Countable Approximations and AECs
References

References

1. J. Baldwin. Categoricity (monograph to appear).
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