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Computability without the equality test

Basic assumption (Korovina, Kudinov):

Programs do not use operators like
if A=B then ..., where A or B are real–valued expressions
Programs use the continuous operations +,−,×, /, and
constants 0 and 1

Property. If a program P halts on an input tuple x̄ ∈ Rn then
there exists an open set U ⊆ Rn containing x̄ such that P halts on
all ȳ ∈ U.
Thus, in this approach all ‘c.e.’ sets are open. Moreover, they are
effectively open (see the next slide).
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Effectively open sets

Definition
A set S ⊆ Rn is said to be effectively open if there are
a computable family of n–tuples of rational numbers (q̄i )i∈ω and
a computable family of rational numbers (εi )i∈ω such that

S =
⋃
i∈ω

B(q̄i , εi ), where B(q̄, ε) = {x̄ ∈ Rn | ‖x̄ − q̄‖ < ε}.
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Σ–definability: HF–superstructures

M = 〈M; P0, . . . ,Pk〉

HF(M): all hereditarily finite sets over M (for instance,
{∅, {∅,m}}, {∅, {∅, {{m0,∅},∅},m1}})

More formally:

HF0(M) = M

HFt+1(M) = HFt(M) ∪ S<ω(HFt(M))

HF(M) =
⋃
t<ω

HFt(M)

〈U,∈,P0, . . . ,Pk ,∅〉
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∆0– and Σ–formulas

∆0–formulas:
closure of the set of all quantifier–free formulas under ∧, ∨, ¬,
→, ∀x ∈ y , ∃x ∈ y

Σ–formulas:
closure of the set of all ∆0–formulas under ∧, ∨, ∀x ∈ y . . .,
∃x ∈ y . . ., ∃x
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Analogs of classical notions for HF–computability

∆0–definable = basic computability

Σ–definable = c.e.

Σ–definable together with complements (∆–) = computable
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Σ–subsets in Rn

Theorem (folklore)

A set S ⊆ Rn is Σ–definable in HF(R) if and only if there exists a
computable family of quantifier–free formulas (ϕi (x̄))i∈ω of the
language of ordered fields such that

x̄ ∈ A ⇔ R |=
∨
i∈ω

ϕi (x̄).
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What are the relations between the computability without equality
test and Σ–definability?

Theorem (coauth. M. Korovina)
1 Any effectively open subset of Rn is Σ–definable in HF(R).
2 There exists an open set A ⊆ R which is Σ–definable in

HF(R) but fails to be effectively open.

Sketch of the proof:
Effective numbering of all effectively open subsets of R:

Sn =
⋃

i∈Wn

B(q(i)0
, q(i)1

)
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We need to construct a Σ–definable subset A ⊆ R so that to
satisfy the following conditions:

Sn 6= A and A is open

Construction: at each interval, [n, n + 1] we satisfy Sn 6= A
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Choosing interior of a set

Can we effectively transform the Σ–definitions of sets into
Σ–definitions of their interiors?

Answer: NO

Theorem (coauth. M. Korovina)

There is no effective transformation of Σ–formulas ϕ 7→ ϕ∗ such
that for each Σ–formula ϕ(x) holds

1 the set ϕ∗[HF(R)] is open and ϕ∗[HF(R)] ⊆ ϕ[HF(R)];

2 if the set ϕ[HF(R)] is open then ϕ∗[HF(R)] = ϕ[HF(R)].
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Some more definitions

Σ(R): the class of all Σ–definable subsets of R
ν(n): a subset of R which is defined in HF(R) by a formula with
Gödel number n.
Thus, 〈Σ(R), ν〉 is a numbered set.
A morphism of numbered sets 〈S0, µ0〉 → 〈S1, µ1〉 is any mapping
θ : S0 → S1 for which there is a computable function f such that
the following diagram commutes:

S0
θ→ S1

µ0 ↑ ↑ µ1

ω
f→ ω

Retraction: a morphism p : 〈S , µ〉 → 〈S , µ〉 such that p2 = p.
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Theorem (coauth. M. Korovina)

Neither the class of all open Σ–subsets of R nor the class of all
effectively open subsets of R can be obtained as an image of a
retraction of the numbered set 〈Σ(R), ν〉.
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Closures and interiors

Theorem (coauth. M. Korovina)

There exists a ∆–subset of S ⊆ R such that
1 The closure and the interior of each of the sets S , R \ S are

not Σ–definable.
2 If V ∈ {S , R \ S }, then there is no maximal by inclusion

Σ–definable open subset of V and there is no minimal by
inclusion Σ–definable closed superset of V .
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Definitions

The index set of a property P is

{n | the set defined by the Σ–formula with Gödel number n
has the property P}

Theorem
1 The index sets of the classes of open, effectively open, closed,

clopen Σ–subsets of Rn are Π1
1–complete, for all n ∈ ω \ {0}.

The numbered set 〈EO;µ〉, where µ(n) = Sn, is a bad subobject of
〈Σ(R); ν〉. Computability without equality test should be studied
separately.
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Complexity results

Theorem
1 the index sets of the relations of inclusion and of equality on

Σ–subsets of Rn are Π1
1–complete, for all n ∈ ω \ {0}.

2 the index set of the property ‘to be nowhere dense in Rn’ is
Π0

3–complete, for all n ∈ ω \ {0}.
3 the index set of the property ‘to be a dense subset of Rn’ is

Π0
2–complete, for all n ∈ ω \ {0}.

4 the index set of the property ‘to be the set of the first category
in Rn’ is Π0

1–complete, for all n ∈ ω \ {0}.

The more complicated is a topological property the easier is its
index set!
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Complexity results

Theorem

Let n > 0. Then every Π1
1–set m–reduces to the index set of the

property ‘to be a connected subset of Rn’.
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The basic construction

Kleene–Brouwer ordering <KB on ω<ω:

α <KB β
df⇔ (β v α ∧ α 6= β) ∨ (α <lex β)
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Definitions
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Σ–Definability over R
Σ–Definability over C
Σ–Definability over H = 〈H, +,×, 0, 1〉

Σ–definability over abstract structures

M = 〈M; Pn0
0 , . . . ,Pns

s 〉 is Σ–definable over HF(A) if there are
a Σ–definable N ⊆ HF(A)

Σ–definable predicates Qn0
0 , . . . ,Q

ns
s on N whose complements

in Nni are Σ–definable over HF(A) as well
an equivalence relation E ⊆ N2 which is Σ–definable over
HF(A) together with its complement in N2

such that E is a congruence on 〈N; Qn0
0 , . . . ,Q

ns
s 〉 and its quotient

modulo E is isomorphic to M.
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Σ–definability: examples

Σ–definable over HF(∅) = structures isomorphic to computable
ones

Σ–definable over HF(〈ω, s,A〉) = structures isomorphic to
A–computable ones
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Definitions
Examples
Σ–Definability over R
Σ–Definability over C
Σ–Definability over H = 〈H, +,×, 0, 1〉

Σ–Definability over R = 〈R ,+,×, 0, 1, <〉

Theorem
1 If an at most countable structure is Σ–definable over HF(R)

without parameters then it has a hyperarithmetical isomorphic
copy

2 For any hyperarithmetical set A there exist a countable
structure Σ–definable over HF(R) without parameters such
that A reduces to its Turing degree.

3 If all the equivalence classes of a structure which is Σ–definable
over HF(R) without parameters are at most countable then
this structure is isomorphic to a computable structure.
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Definitions
Examples
Σ–Definability over R
Σ–Definability over C
Σ–Definability over H = 〈H, +,×, 0, 1〉

Σ–definability over C = 〈C ,+,×, 0, 1〉

Theorem (coauth. M. Korovina)

A countable structure is Σ–definable over HF(C) (parameters are
allowed) if and only if it has a computable presentation.
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Definitions
Examples
Σ–Definability over R
Σ–Definability over C
Σ–Definability over H = 〈H, +,×, 0, 1〉

Definability over HF(H)

Theorem
A countable structure is Σ–definable (without parameters, with at
most countable classes) over HF(H) if and only if it is Σ–definable
over HF(R) (without parameters, with at most countable classes).
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Thank you for attention !
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