Diamond, non-saturation, and weak square principles

Logic Colloquium 2009 (European ASL meeting)

02-Aug-09, Sofia

Assaf Rinot Tel-Aviv University

http://www.tau.ac.il/~rinot

Diamond on successor cardinals

Definition (Jensen, '72). For an infinite cardinal, λ , and a stationary set $S \subseteq \lambda^+$, $\Diamond(S)$ asserts the existence of a sequence $\langle A_{\alpha} \mid \alpha \in S \rangle$ such that $\{\alpha \in S \mid A \cap \alpha = A_{\alpha}\}$ is stationary for all $A \subseteq \lambda^+$.

Fact. For
$$S \subseteq \lambda^+$$
, $\diamondsuit_S \Rightarrow \diamondsuit_{\lambda^+} \Rightarrow 2^{\lambda} = \lambda^+$.

Question. Given a stationary, $S \subseteq \lambda^+$, Does $2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(S)$?

A related concept

Fact. $\Diamond(S)$ entails that $NS_{\lambda^+} \upharpoonright S$ is *non-saturated*. That is, there exists a family of λ^{++} many stationary subsets of S, whose pairwise intersection nonstationary. <u>*Proof.*</u> Let $\langle A_{\alpha} \mid \alpha \in S \rangle$ witness $\Diamond(S)$. Denote $S_A = \{\alpha \mid A \cap \alpha = A_{\alpha}\}$. Then $\{S_A \mid A \subseteq \lambda^+\}$ exemplifies the non-saturation of $NS_{\lambda^+} \upharpoonright S$.

Question. Given a stationary, $S \subseteq \lambda^+$, Must $NS_{\lambda^+} \upharpoonright S$ be non-saturated?

Two negative results. $\lambda = \omega$

Theorem (Jensen, '74). It is consistent that CH holds, while $\Diamond(\omega_1)$ fails.

Theorem (Steel-Van Wesep, '82). Suppose that V is a model of " $ZF + AD_{\mathbb{R}} + \Theta$ is regular".

Then, there is a forcing extension which is a model of ZFC, in which NS_{ω_1} is saturated.

Remark. By Later work of Shelah and Jensen-Steel, the saturation of NS_{ω_1} is equiconsistent with the existence of a single Woodin cardinal.

Two positive results. $\lambda > \omega$

Denote
$$E_{\neq\kappa}^{\lambda^+} := \{\delta < \lambda^+ \mid cf(\delta) \neq \kappa\}.$$

Theorem (Shelah, '90s). If λ is an uncountable cardinal, and S is a stationary subset of $E_{\neq cf(\lambda)}^{\lambda^+}$, then $NS_{\lambda^+} \upharpoonright S$ is non-saturated.

A continuous effort of 30 years recently culminated in:

Theorem (Shelah, 2007). If λ is an uncountable cardinal, and S is a stationary subset of $E_{\neq cf(\lambda)}^{\lambda^+}$, then $2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(S)$.

The critical cofinality. $\lambda = cf(\lambda)$

Denote
$$E_{\kappa}^{\lambda^+} := \{\delta < \lambda^+ \mid cf(\delta) = \kappa\}.$$

Theorem (Shelah, '80). For every regular uncountable cardinal, λ , it is consistent that:

$$\operatorname{GCH} + \neg \diamondsuit(E_{\lambda}^{\lambda^+})$$
.

Theorem (Woodin, '80s). For every regular uncountable cardinal, λ , having a huge cardinal above it, in some $< \lambda$ -closed forcing extension:

 $NS_{\lambda^+} \upharpoonright S$ saturated, for some stationary $S \subseteq E_{\lambda}^{\lambda^+}$.

The critical cofinality. $\lambda > cf(\lambda)$

Def. $S \subseteq \lambda^+$ reflects iff the following set is stationary: Tr(S) := { $\gamma < \lambda^+ | cf(\gamma) > \omega, S \cap \gamma$ is stationary}.

Theorem (Shelah, '84). For every singular cardinal, λ , in some cofinality-preserving forcing extension:

 $\mathsf{GCH}+\neg \diamondsuit(S)$ for some non-reflecting stationary set $S \subseteq E_{\mathsf{cf}(\lambda)}^{\lambda^+}$.

Theorem (Foreman, '83). For every singular cardinal, λ , having a supercompact cardinal above it, and an almost-huge cardinal above that supercompact, in some λ -preserving forcing extension:

 $NS_{\lambda^+} \upharpoonright S$ saturated, for a non-reflecting stationary $S \subseteq E_{cf(\lambda)}^{\lambda^+}$.

Questions

Question 1. Suppose λ is a singular cardinal. Must $2^{\lambda} = \lambda^+ \Rightarrow \Diamond_S$ for every $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ that reflects?

Question 2. Suppose λ is a singular cardinal. Must $NS_{\lambda^+} \upharpoonright S$ be non-saturated for every $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ that reflects?

Question 3. Can $NS_{\omega_2} \upharpoonright E_{\omega_1}^{\omega_2}$ be saturated?

Some answers

Diamond and reflecting sets

A partial affirmative answer to Question 1 is provided by Shelah and Zeman, as follows.

Theorem (Shelah, '84). If $2^{\lambda} = \lambda^+$ for a strong limit singular cardinal λ , and \Box^*_{λ} holds, then $\Diamond(S)$ for every $S \subseteq E^{\lambda^+}_{cf(\lambda)}$ that reflects.

Theorem (Zeman, 2008). If $2^{\lambda} = \lambda^+$ for a singular cardinal λ , and \Box^*_{λ} holds, then $\diamondsuit(S)$ for every $S \subseteq E^{\lambda^+}_{cf(\lambda)}$ that reflects.

Weak Square

Definition (Jensen '72). \Box_{λ}^* asserts the existence of a sequence $\langle \mathcal{P}_{\alpha} \mid \alpha < \lambda^+ \rangle$ such that:

1. $\mathcal{P}_{\alpha} \subseteq [\alpha]^{<\lambda}$ and $|\mathcal{P}_{\alpha}| = \lambda$ for all $\alpha < \lambda^+$;

2. for every limit $\gamma < \lambda^+$, there exists a club $C_{\gamma} \subseteq \gamma$ satisfying:

 $C_{\gamma} \cap \alpha \in \mathcal{P}_{\alpha}$ for all $\alpha < \gamma$.

The approachability ideal

Definition (Shelah). A set T is in $I[\lambda^+]$ iff:

- 1. $T \subseteq \lambda^+$;
- 2. there exists a sequence $\langle \mathcal{P}_{\alpha} \mid \alpha < \lambda^+ \rangle$ such that:
- 2.1. $\mathcal{P}_{\alpha} \subseteq [\alpha]^{<\lambda}$ and $|\mathcal{P}_{\alpha}| = \lambda$ for all $\alpha < \lambda^+$;
- 2.2. for almost all $\gamma \in T$, there exists an unbounded $A_{\gamma} \subseteq \gamma$ satisfying:

$$A_{\gamma} \cap \alpha \in \bigcup_{\beta < \gamma} \mathcal{P}_{\beta}$$
 for all $\gamma < \alpha$.

A relative of approachability ideal Definition. Given $S \subseteq E_{cf(\lambda)}^{\lambda^+}$, a set T is in $I[S; \lambda]$ iff: 1. $T \subseteq Tr(S)$;

2. there exists a sequence $\langle \mathcal{P}_{\alpha} \mid \alpha < \lambda^+ \rangle$ such that:

2.1.
$$\mathcal{P}_{\alpha} \subseteq [\alpha]^{<\lambda}$$
 and $|\mathcal{P}_{\alpha}| = \lambda$ for all $\alpha < \lambda^+$;

2.2. for almost all $\gamma \in T$, there exists a stationary $S_{\gamma} \subseteq S \cap \gamma$ satisfying: $S_{\gamma} \cap \alpha \in \bigcup \{ \mathcal{P}(X) \mid X \in \mathcal{P}_{\alpha} \}$ for all $\alpha < \gamma$

Remark. If λ is SSL, then $I[S; \lambda] \subseteq I[\lambda^+]$.

A comparison with weak square

Let λ denote a singular cardinal, and let $S \subseteq E_{cf(\lambda)}^{\lambda^+}$.

Observation. If $I[S; \lambda]$ contains a stationary set, then *S* reflects.

Proposition. Assume \Box_{λ}^* . If *S* reflects, then $I[S; \lambda]$ contains a stationary set.

Theorem. It is relatively consistent with the existence of a supercompact cardinal that \Box_{λ}^* fails, while $I[S; \lambda]$ contains a stationary set for every stationary $S \subseteq E_{cf(\lambda)}^{\lambda^+}$.

Answering question 1

Improving the Shelah-Zeman theorem, we have:

Theorem. Suppose λ is a singular cardinal, $S \subseteq E_{cf(\lambda)}^{\lambda^+}$; If $I[S; \lambda]$ contains a stat. set, then $2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(S)$.

Answering Question 1 in the negative, while establishing that the above improvement is optimal, we have:

Theorem (Gitik-R.). It is relatively consistent with the existence of a supercompact cardinal that:

- (1) GCH holds;
- (2) $\aleph_{\omega+1} \in I[\aleph_{\omega+1}];$
- (3) Every stationary subset of $E_{\omega}^{\aleph_{\omega}+1}$ reflects;
- (4) $\Diamond(S)$ fails, for some (reflecting) $S \subseteq E_{\omega}^{\aleph_{\omega}+1}$.

Stationary Approachability Property

Theorem (Shelah, '84). If $2^{\lambda} = \lambda^+$ for a strong limit singular cardinal λ , and \Box^*_{λ} holds, then $\Diamond(S)$ for every $S \subseteq E^{\lambda^+}_{cf(\lambda)}$ that reflects.

Theorem. If $2^{\lambda} = \lambda^{+}$ for a strong limit singular cardinal λ , and \Box_{λ}^{*} holds, and every stationary subset of $E_{cf(\lambda)}^{\lambda^{+}}$ reflects, then, moreover, $\diamondsuit^{*}(\lambda^{+})$ holds.

Definition. SAP_{λ} denote the assertion that $I[S; \lambda]$ contains a stationary set for every $S \subseteq E_{cf(\lambda)}^{\lambda^+}$ that reflects.

Theorem. Replacing \Box_{λ}^{*} with SAP_{λ} is impossible, in the sense that the conclusion would fail to hold. (obtained by forcing over a model with a supercompact.)

Summary: Square vs. Diamond

Let $\operatorname{Refl}_{\lambda}$ denote the assertion that every stationary subset of $E_{\operatorname{cf}(\lambda)}^{\lambda^+}$ reflects.

Then, for λ singular, we have:

1.
$$\operatorname{GCH} + \Box_{\lambda}^{*} \not\Rightarrow \Diamond^{*}(\lambda^{+});$$

2. $\operatorname{GCH} + \operatorname{Refl}_{\lambda} + \Box_{\lambda}^{*} \Rightarrow \Diamond^{*}(\lambda^{+});$
3. $\operatorname{GCH} + \operatorname{Refl}_{\lambda} + \operatorname{SAP}_{\lambda} \not\Rightarrow \Diamond^{*}(\lambda^{+});$
4. $\operatorname{GCH} + \operatorname{Refl}_{\lambda} + \operatorname{SAP}_{\lambda} \Rightarrow \Diamond(S)$ for every stat. $S \subseteq \lambda^{+};$
5. $\operatorname{GCH} + \operatorname{Refl}_{\lambda} + \operatorname{SAP}_{\lambda} \not\Rightarrow \Diamond(S)$ for every stat. $S \subseteq \lambda^{+};$

5. GCH + Refl_{λ} + AP_{λ} \Rightarrow \diamond (S) for every stat. $S \subseteq \lambda^+$.

Remark. AP_{λ} asserts that $\lambda^+ \in I[\lambda^+]$.

Around question 2

Let λ denote a singular cardinal, and $S \subseteq E_{cf(\lambda)}^{\lambda^+}$.

Theorem (Gitik-Shelah, '97). NS_{λ^+} | $E_{cf(\lambda)}^{\lambda^+}$ is non-saturated.

Theorem (Krueger, 2003). If $NS_{\lambda^+} \upharpoonright S$ is saturated, then S is co-fat.

Theorem. If $NS_{\lambda^+} \upharpoonright S$ is saturated, then $I[S; \lambda]$ does not contain a stationary set.

In particular, SAP $_{\lambda}$ (and hence \Box_{λ}^*) imposes a positive answer to Quetsion 2.

The effect of smaller cardinals

A shift in focus

Instead of studying the validity of $\Diamond(S)$ (or saturation), we now focus on finding sufficient conditions for $I[S; \lambda]$ to contain a stationary set.

This yields a linkage between virtually unrelated objects.

Theorem. Assume GCH and that κ is an uncoutable cardinal with no κ^+ -Souslin trees. Then $\diamondsuit(E_{cf(\lambda)}^{\lambda^+})$ holds for the class of singular cardinals λ of cofinality κ .

let us explain how small cardinals effects λ ..

The effect of smaller cardinals, I

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

 $R_1(\theta,\kappa)$ asserts that for every function $f: E^{\theta}_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

 $\{\delta \in E_{\kappa}^{\theta} \mid f^{-1}[j] \cap \delta \text{ is stationary}\}\$ is stationary.

Facts. 1. $\Box_{\kappa} \Rightarrow \neg R_1(\kappa^+, \kappa)$; 2. every stationary subset of $E_{\kappa}^{\kappa^{++}}$ reflects $\Rightarrow R_1(\kappa^{++}, \kappa^+)$; 3. By Harrington-Shelah '85, $R_1(\aleph_2, \aleph_1)$ is equiconsistent with the existence of a Mahlo cardinal.

The effect of smaller cardinals, II

Theorem. Suppose $\lambda > cf(\lambda) = \kappa > \omega$; If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_1(\theta, \kappa)$ holds, then $I[E_{cf(\lambda)}^{\lambda^+}; \lambda]$ contains a stationary set.

Corollary. Suppose κ is a regular cardinal and every stationary subset of $E_{\kappa}^{\kappa^{++}}$ reflects.

Then $2^{\lambda} = \lambda^+ \Rightarrow \diamondsuit(E_{cf(\lambda)}^{\lambda^+})$ for the class of singular cardinals λ of cofinality κ^+ .

Corollary. Assume PFA⁺; $\Diamond(E_{cf(\lambda)}^{\lambda^+})$ holds for every λ strong limit of cofinality ω_1 .

The effect of smaller cardinals, III

Definition. Assume $\theta > \kappa > \omega$ are regular cardinals.

 $R_2(\theta, \kappa)$ asserts that for every function $f : E^{\theta}_{<\kappa} \to \kappa$, there exists some $j < \kappa$ such that:

 $\{\delta \in E_{\kappa}^{\theta} \mid f^{-1}[j] \cap \delta \text{ is non-stationary}\}\$ is non-stationary.

Facts. 1. $R_2(\theta, \kappa) \Rightarrow R_1(\theta, \kappa)$ and hence the strength of $R_2(\kappa^+, \kappa)$ is at least of a Mahlo cardinal. 2. By Magidor '82, $R_2(\aleph_2, \aleph_1)$ is relatively consistent with the existence of a weakly compact cardinal.

Remark. The exact strength of $R_2(\aleph_2, \aleph_1)$ is unknown.

The effect of smaller cardinals, IV

Theorem. Suppose $\lambda > cf(\lambda) = \kappa > \omega$; If there exists a regular $\theta \in (\kappa, \lambda)$ such that $R_2(\theta, \kappa)$ holds, then $Tr(S) \cap E_{\theta}^{\lambda^+} \in I[S; \lambda]$ for every $S \subseteq \lambda^+$.

Corollary. Suppose $R_2(\theta, \kappa)$ holds. For every sing. cardinal λ of cofinality κ with $2^{\lambda} = \lambda^+$: $\Diamond(S)$ holds whenever $\operatorname{Tr}(S) \cap E_{\theta}^{\lambda^+}$ is stationary.

Remark. The $R_2(\cdot, \cdot)$ proof resembles the one of an analogous theorem by Viale-Sharon concerning the weak approachability ideal. The $R_1(\cdot, \cdot)$ proof builds on a fundamental fact from Shelah's *pcf* theory.

Generalized stationary sets

The sup function, I

Definition. A set $\mathcal{X} \subseteq \mathcal{P}(\lambda^+)$ is *stationary* (in the generalized sense) iff for every $f : [\lambda^+]^{<\omega} \to \lambda^+$, there exists some $X \in \mathcal{X}$ such that $f : [X]^{<\omega} \subseteq X$.

Question (König-Larson-Yoshinobu). Let λ denote an infinite cardinal. Is it possible to prove in ZFC that every stationary $\mathcal{B} \subseteq [\lambda^+]^{\omega}$ can be thinned out to a stationary $\mathcal{A} \subseteq \mathcal{B}$ on which the sup-function is injective?

The sup function, II

Question (König-Larson-Yoshinobu). Let λ denote an infinite cardinal. Is it possible to prove in ZFC that every stationary $\mathcal{B} \subseteq [\lambda^+]^{\omega}$ can be thinned out to a stationary $\mathcal{A} \subseteq \mathcal{B}$ on which the sup-function is injective?

Proposition. If $\mathcal{A} \subseteq [\lambda^+]^{\omega}$ is a stationary set on which the sup-function is injective, then $cf([\lambda^+]^{\omega}, \subseteq) = \lambda^+$.

In particular, if the SCH fails, then we get a counterexample to the above question. But what can one say in the context of GCH?

▶ It turns out that diamond helps..

The sup function, III

Theorem. Suppose λ is a cardinal, $2^{\lambda} = \lambda^{+}$. For a stationary $S \subseteq E_{<\lambda}^{\lambda^{+}}$, TFAE: 1) $\Diamond(S)$; 2) there exists a stationary $\mathcal{X} \subseteq [\lambda^{+}]^{<\lambda}$, with $\{\sup(X) \mid X \in \mathcal{X}\} \subseteq S$, on which the sup-function is injective.

Corollary. A negative answer to the K-L-Y question. <u>Proof.</u> Work in a model of GCH and there exists $S \subseteq E_{\omega}^{\aleph_{\omega}+1}$ on which $\diamondsuit(S)$ fails. Put $\mathcal{B} := \{X \in [\aleph_{\omega+1}]^{\omega} \mid \sup(X) \in S\}$. Then \mathcal{B} is stationary, and no stationary subset of \mathcal{B} can be refined to a set on which the sup-function is injective.

A related result

Theorem. Let λ denote an infinite cardinal. Suppose $\mathcal{X} \subseteq [\lambda^+]^{<\lambda}$ is a stationary set on which the sup-function is $(\leq \lambda)$ -to-1. Put $S := \{ \sup(X) \mid X \in \mathcal{X} \}$. Then $NS_{\lambda^+} \upharpoonright S$ is non-saturated.

λ^+ -guessing

30

A very weak consequence of $\Diamond(E_{cf(\lambda)}^{\lambda^+})$

Definition. For a function $f : \lambda^+ \to cf(\lambda)$, let κ_f denote the minimal cardinality of a family $\mathcal{P} \subseteq [\lambda^+]^{cf(\lambda)}$ with the following property.

For all $Z \subseteq \lambda^+$ such that $\bigwedge_{\beta < cf(\lambda)} |Z \cap f^{-1}\{\beta\}| = \lambda^+$, there exist some $a \in \mathcal{P}$ with $sup(f[a \cap Z]) = cf(\lambda)$.*

Definition. For a singular cardinal λ , we say that λ^+ -guessing holds iff $\kappa_f \leq \lambda^+$ for all $f \in \lambda^+ \operatorname{cf}(\lambda)$.

*Note that if λ is SSL, then we may assume that \mathcal{P} is closed under taking subsets. Thus, we may moreover demand the existence of $a \in \mathcal{P}$ such that $a \subseteq Z$ and $f \upharpoonright a$ is injective.

the failure of λ^+ -guessing

Theorem (Džamonja-Shelah, 2000). It is relatively consistent with the existence of a supercompact cardinal that there exist a strong limit singular cardinal, λ , and a function $f : \lambda^+ \to cf(\lambda)$ such that $\kappa_f = 2^{\lambda} > \lambda^+$.

Theorem. Suppose λ is a strong limit singular; then:

$$\{\kappa_f \mid f \in {}^{\lambda^+} \operatorname{cf}(\lambda)\} = \{0, 2^{\lambda}\}.$$

Corollary. For a strong limit singular cardinal, λ , TFAE: 1) λ^+ -guessing; 2) $\diamond^*(E_{\neq cf(\lambda)}^{\lambda^+})$.

a fundamental cardinal arithmetic statement in disguise

Theorem. The following are equivalent:

- 1. λ^+ -guessing holds for every singular cardinal, λ ;
- 2. Shelah's Strong Hypothesis, i.e., $cf([\lambda]^{cf(\lambda)}, \subseteq) = \lambda^+$ for every singular cardinal, λ .
- 3. Every first-countable topol. space whose density is a regular cardinal, κ , enjoys the following reflection: if every separable subspace is of size $\leq \kappa$, then the whole space is of size $\leq \kappa$.

Open problems

Open problems

Let λ denote a singular cardinal.

Question I. Does $2^{\lambda} = \lambda^+$ entail $\Diamond (E_{cf(\lambda)}^{\lambda^+})$?

Question II. Must there exist a stationary subset of $E_{>cf(\lambda)}^{\lambda^+}$ that carries a partial (weak) square sequence?

Question III. Is " NS_{ω_1} saturated" consistent with CH?

Thank you!

