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Extractive Proof Theory (G. Kreisel):

New results by logical analysis of proofs

Input: Ineffective proof P of C

Goal: Additional information on C :

effective bounds,

algorithms,

continuous dependency or full independence from certain parameters,

generalizations of proofs: weakening of premises.

E.g. Let C ≡ ∀x ∈ IN∃y ∈ INF (x , y)

Naive Attempt: try to extract an explicit computable function realizing

(or bounding) ‘∃y ’: ∀x ∈ INF (x , f (x)).
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Naive attempt fails

Proposition

There exist a sentence A ≡ ∀x∃y∀z Aqf (x , y , z) in the language of

arithmetic (Aqf quantifier-free and hence decidable), such

A is logical valid,

there is no recursive bound f s.t. ∀x∃y ≤ f (x)∀z Aqf (x , y , z).

Proof: Take

A :≡ ∀x∃y∀z
(
T (x , x , y) ∨ ¬T (x , x , z)),

where T is the (primitive recursive) Kleene-T-predicate.

Any bound g on ‘∃y ’, i.e. no computable g such that

∀x∃y ≤ g(x)∀z (T (x , x , y) ∨ ¬T (x , x , z))

since this would solve the halting problem! 2
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However, one can obtain such witness candidates and bounds (and even

realizing function(al)s) for a weakened version AH of A:

Definition

A ≡ ∃x1∀y1∃x2∀y2Aqf (x1, y1, x2, y2). Then the Herbrand normal form of

A is defined as

AH :≡ ∃x1, x2Aqf (x1, f (x1), x2, g(x1, x2)),

where f , g are new function symbols, called index functions.

A and AH are equivalent with respect to logical validity, i.e.

|= A ⇔ |= AH ,

but are not logically equivalent.
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We now consider again the sentence

A ≡ ∀x∃y∀z(P(x , y) ∨ ¬P(x , z)),

In contrast to A, the Herbrand normal form AH of A

AH ≡ ∃y
(
P(x , y) ∨ ¬P(x , g(y))

)
allows to construct a list of candidates (uniformly in x , g) for ‘∃y ’,

namely (c , g(c)) (and also (x , g(x))) for any constant c):

AH,D :≡
(
P(x , c) ∨ ¬P(x , g(c))

)
∨

(
P(x , g(c)) ∨ ¬P(x , g(g(c)))

)
︸ ︷︷ ︸

∈TAUT

is a tautology.
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J. Herbrand’s Theorem (‘Théorème fondamental’, 1930)

Theorem

Let A ≡ ∃x1∀y1∃x2∀y2Aqf (x1, y1, x2, y2). Then:

PL ` A iff there are terms s1, . . . , sk , t1, . . . , tn (built up out of the

constants and variables of A and the index functions used for the

formation of AH) such that

AH,D :≡
k∨

i=1

n∨
j=1

Aqf

(
si , f (si ), tj , g(si , tj)

)
is a tautology. AH,D is called Herbrand Disjunction.

Note that the length of this disjunction is fixed: k · n. The terms si , tj can

be extracted from a given PL-proof of A.
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Herbrand’s Theorem continued

Replacing in AH,D all terms ‘g(si , tj)’, ‘f (si )’, by new variables (treating

larger terms first) results in another tautological disjunction AD s.t. A

can be inferred from A by a direct proof.
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Remark

For sentences A ≡ ∀x∃y∀z Aqf (x , y , z), AD can be written in the

form

Aqf (x , t1, b1) ∨ Aqf (x , t2, b2) ∨ . . . ∨ Aqf (x , tk , bk),

where the bi are new variables and ti does not contain any bj with

i ≤ j (used by Luckhardt’s analysis of Roth’s theorem, see below).

Herbrand’s theorem immediately extends to first-order theories T
whose non-logical axioms G1, . . . ,Gn are all purely universal.
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Theorem (Roth 1955)

An algebraic irrational number α has only finitely many exceptionally

good rational approximations, i.e. for ε > 0 there are only finitely many

q ∈ IN such that

R(q) :≡ q > 1 ∧ ∃!p ∈ ZZ : (p, q) = 1 ∧ |α− pq−1| < q−2−ε.

Theorem (Luckhardt 1985/89)

The following upper bound on #{q : R(q)} holds:

#{q : R(q)} <
7

3
ε−1 log Nα + 6 · 103ε−5 log2 d · log(50ε−2 log d),

where Nα < max(21 log 2h(α), 2 log(1 + |α|)) and h is the logarithmic

absolute homogeneous height and d = deg(α).

Independently: Bombieri and van der Poorten 1988.
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Limitations

Techniques work only for restricted formal contexts: mainly purely

universal (‘algebraic’) axioms, restricted use of induction, no higher

analytical principles.

Require that one can ‘guess’ the correct Herbrand terms: in general

procedure results in proofs of length 2
|P|
n , where 2k

n+1 = 22k
n (n cut

complexity).
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Towards generalizations of Herbrand’s theorem

Allow functionals Φ(x , f ) instead of just Herbrand terms: Let’s consider

again the example

A ≡ ∀x∃y∀z
(
T (x , x , y) ∨ ¬T (x , x , z))

)
.

AH can be realized by a computable functional of type level 2 which is

defined by cases:

Φ(x , g) :=

{
x if ¬T (x , x , g(x))

g(x) otherwise.

From this definition it easily follows that

∀x , g
(
T (x , x ,Φ(x , g)) ∨ ¬T (x , x , g(Φ(x , g))

)
.

Φ satisfies G. Kreisel’s no-counterexample interpretation!
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If A is not provable in PL but e.g. in PA more complicated functionals

are needed (Kreisel 1951):

Let (an) be a nonincreasing sequence in [0, 1]. Then, clearly, (an) is

convergent and so a Cauchy sequence which we write as:

(1) ∀k ∈ IN∃n ∈ IN∀m ∈ IN∀i , j ∈ [n; n + m] (|ai − aj | ≤ 2−k),

where [n; n + m] := {n, n + 1, . . . , n + m}.
Then the (partial) Herbrand normal form of this statement is

(2) ∀k ∈ IN∀g ∈ ININ∃n ∈ IN∀i , j ∈ [n; n + g(n)] (|ai − aj | ≤ 2−k).
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By E. Specker 1949 there exist computable such sequences (an) even in

Q ∩ [0, 1] without computable bound on ‘∃n’ in (1).

By contrast, there is a simple (primitive recursive) bound Φ∗(g , k) on

(2) (also referred to as ‘metastability’ by T.Tao):

Proposition

Let (an) be any nonincreasing sequence in [0, 1] then

∀k ∈ IN∀g ∈ ININ∃n ≤ Φ∗(g , k)∀i , j ∈ [n; n + g(n)] (|ai − aj | ≤ 2−k),

where

Φ∗(g , k) := g̃ (2k )(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).
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(2) (also referred to as ‘metastability’ by T.Tao):

Proposition

Let (an) be any nonincreasing sequence in [0, 1] then

∀k ∈ IN∀g ∈ ININ∃n ≤ Φ∗(g , k)∀i , j ∈ [n; n + g(n)] (|ai − aj | ≤ 2−k),

where

Φ∗(g , k) := g̃ (2k )(0) with g̃(n) := n + g(n).

Moreover, there exists an i < 2k such that n can be taken as g̃ (i)(0).
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Remark

The previous result can be viewed as a polished form of a Herbrand

disjunction of variable (in k) length:

2k−1∨
i=0

(
|ag̃ (i)(0) − ag̃(g̃ (i)(0))| ≤ 2−k

)
.

Corollary (T. Tao’s finite convergence principle)

∀k ∈ IN, g : IN → IN∃M ∈ IN∀1 ≥ a0 ≥ . . . ≥ aM ≥ 0∃N ∈ IN(
N + g(N) ≤ M ∧ ∀n,m ∈ [N,N + g(N)](|an − am| ≤ 2−k

))
.

One may take N := Φ∗(g , k) as above.
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An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f (x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i (x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS to appear):

in general no computable rate of convergence.

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f (x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i (x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS to appear):

in general no computable rate of convergence.

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f (x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i (x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS to appear):

in general no computable rate of convergence.

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



An Example from Ergodic Theory

X Hilbert space, f : X → X linear and ‖f (x)‖ ≤ ‖x‖ for all x ∈ X .

An(x) :=
1

n + 1
Sn(x), where Sn(x) :=

n∑
i=0

f i (x) (n ≥ 0).

Theorem (von Neumann Mean Ergodic Theorem)

For every x ∈ X , the sequence (An(x))n converges.

Avigad/Gerhardy/Towsner (TAMS to appear):

in general no computable rate of convergence.

Theorem (Garrett Birkhoff 1939)

Mean Ergodic Theorem holds for uniformly convex Banach spaces.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



Based on logical metatheorem to be discussed in the 2nd lecture:

Theorem (K./Leu̧stean, to appear in Ergodic Theor. Dynam. Syst.)

X uniformly convex Banach space, η a modulus of uniform convexity and

f : X → X as above, b > 0.

Then for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all g : IN → IN :

∃n ≤ Φ(ε, g , b, η)∀i , j ∈ [n; n + g(n)]
(
‖Ai (x)− Aj(x)‖ < ε

)
,

where

Φ(ε, g , b, η) := M · h̃K (0), with

M :=
⌈

16b
ε

⌉
, γ := ε

16η
(

ε
8b

)
, K :=

⌈
b
γ

⌉
,

h, h̃ : IN → IN, h(n) := 2(Mn + g(Mn)), h̃(n) := maxi≤n h(i).

Special Hilbert case: treated prior by Avigad/Gerhardy/Towsner

(again based on logical metatheorem).
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Problems of the no-counterexample interpretation

For principles F ∈ ∃∀∃ n.c.i. no longer ‘correct’. Cn := {0, 1, . . . , n}.

Direct example: Infinitary Pigeonhole Principle (IPP):

∀n ∈ IN∀f : IN → Cn∃i ≤ n∀k ∈ IN∃m ≥ k
(
f (m) = i

)
.

IPP causes arbitrary primitive recursive complexity, but (IPP)H

∀n ∈ IN∀f : IN → Cn∀F : Cn → IN∃i ≤ n∃m ≥ F (i)
(
f (m) = i

)
has trivial n.c.i.-solution for ‘∃i ’,‘∃m’:

M(n, f ,F ) := max{F (i) : i ≤ n} and I (n, f ,F ) := f (M(n, f ,F )).

M, I do not reflect true complexity of IPP!

Related problem: bad behavior w.r.t. modus ponens!
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A Modular Approach: Proof Interpretations

Interpret the formulas A in P : A 7→ AI ,

Interpretation CI contains the additional information,

Construct by recursion on P a new proof PI of CI .

Our approach is based on novel forms and extensions of:

K. Gödel’s functional interpretation!
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Gödel’s functional interpretation in five minutes

Gödel’s functional interpretation D combined with Krivine’s negative

translation N results in an interpretation Sh = D ◦ N (Streicher/K.07)

A 7→ ASh (Shoenfield variant)
such that

ASh ≡ ∀x∃y ASh(x , y), where Aqf is quantifier-free,

For A ≡ ∀x∃y Aqf (x , y) one has ASh ≡ A.

A ↔ ASh by classical logic and quantifier-free choice in all types

QF-AC : ∀a∃b Fqf (a, b) → ∃B∀a Fqf (a,B(a)).

x , y are tuples of functionals of finite type over the base types of

the system at hand,
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ASh ≡ ∀u∃x ASh(u, x), BSh ≡ ∀v∃y BSh(v , y).

(Sh1) PSh ≡ P ≡ PSh for atomic P

(Sh2) (¬A)Sh ≡ ∀f ∃u ¬ASh(u, f (u))

(Sh3) (A ∨ B)Sh ≡ ∀u, v∃x , y
(
ASh(u, x) ∨ BSh(v , y)

)
(Sh4) (∀z A)Sh ≡ ∀z , u∃x ASh(z , u, x)

(Sh5) (A→B)Sh ≡ ∀f , v∃u, y
(
ASh(u, f (u)) → BSh(v , y)

)
(Sh6) (∃zA)Sh ≡ ∀U∃z , f ASh(z ,U(z , f ), f (U(z , f )))

(Sh7) (A ∧ B)Sh ≡ ∀n, u, v∃x , y (n=0 → ASh(u, x)) ∧ (n 6=0 → BSh(v , y))

↔ ∀u, v∃x , y
(
ASh(u, x) ∧ BSh(v , y)

)
.
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Sh extracts from a given proof p

p ` ∀x ∃y Aqf (x , y)

an explicit effective functional Φ realizing ASh, i.e.

∀x Aqf (x ,Φ(x)).
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3. Monotone functional interpretation (K.1996)

Monotone Sh extracts Φ∗ such that

∃Y
(
Φ∗ & Y ∧ ∀x ASh(x ,Y (x))

)
,

where & is some suitable notion of being a ‘bound’ that applies to higher

order function spaces (W.A. Howard){
x∗ &IN x :≡ x∗ ≥ x ,

x∗ &ρ→τ x :≡ ∀y∗, y(y∗ &ρ y → x∗(y∗) &τ x(y)).

Also relevant: bounded functional interpretation (F. Ferreira, P. Oliva)
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Monotone interpretation of PCM and IPP

The monotone functional interpretation of PCM coincides with the

interpretation given above (Tao’s finitary PCM).

The monotone functional interpretation yields a version of the ‘finitary’

IPP propososed by T. Tao.

Tao’s original formulation was wrong as shown by Jaime Gaspar by a

counterexample (see Tao’s correction on his Blog and the acknowledment

in his recent book)!

Full story in: Gaspar/K. ‘On Tao’s “finitary” infinite pigeonhole principle’

(JSL, to appear).
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Summarizing the discussion so far

To exhibit the finitary combinatorial/computational content

(f.c.c.) of ineffective principles P requires nontrivial transformations

PMFI of P as provided by monotone functional interpretation

(MFI). For P ≡ ∀∃-sentence, PMFI provides uniform bound.

MFI provides a general method for carrying out the extraction of

this f.c.c. throughout a given proof all the way down to the

conclusion (already for IPP this is nontrivial).

Specialized to the two prime examples of infinitary principles

discussed in Tao’s essay ‘Soft analysis, hard analysis and the

finite convergence principle’, MFI yields the finitary

reformulations (with explicit bounds) suggested by Tao.
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Tao on a finitary approach to analysis

‘it is common to make a distinction between “hard”, “quantitative”, or

“finitary” analysis on the one hand, and “soft”, “qualitative”, or

“infinitary” analysis on the other hand.’ ...‘It is fairly well known that the

results obtained by hard and soft analysis resp. can be connected to each

other by various “correspondence principles” or “compactness principles”.

It is however my belief that the relationship between the two types of

analysis is much deeper.’ ...’There are rigorous results from proof theory

which can allow one to automatically convert certain types of qualitative

arguments into quantitative ones...’

(T. Tao: Soft analysis, hard analysis, and the finite convergence principle,

2007)
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Lecture II
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General logical metatheorems I

Context: continuous functions between constructively represented

Polish spaces.

Uniformity w.r.t. parameters from compact Polish spaces.

Extraction of bounds from ineffective existence proofs.
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K., 1993-96: P Polish space, K a compact P-space, A∃ existential.

BA:= basic arithmetic, HBC Heine/Borel compactness (SEQ− restricted

sequential compactness).

From a proof

BA + HBC(+SEQ−) ` ∀x ∈ P∀y ∈ K∃m ∈ INA∃(x , y ,m)

one can extract a closed term Φ of BA (+iteration)

BA (+ IA ) ` ∀x ∈ P∀y ∈ K∃m ≤ Φ(fx)A∃(x , y ,m).

Important:

Φ(fx) does not depend on y ∈ K but on a representation fx of x!
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Logical comments

Heine-Borel compactness = WKL (binary König’s lemma).

WKL ` strict-Σ1
1 ↔ Π0

1

(see applications in algebra by Coquand, Lombardi, Roy ...)

Restricted sequential compactness = restricted arithmetical

comprehension.
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Limits of Metatheorem for concrete spaces

Compactness means constructively: completeness and total

boundedness.

Necessity of completeness: The set [0, 2]Q is totally bounded and

constructively representable and

BA ` ∀q ∈ [0, 2]Q ∃n ∈ IN(|q −
√

2| >IR 2−n).

However: no uniform bound on ∃n ∈ IN!
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Necessity of total boundedness: Let B be the unit ball C [0, 1]. B is

bounded and constructively representable.

By Weierstraß’ theorem

BA ` ∀f ∈ B∃n ∈ IN
(
n code of p ∈ Q[X ] s.t. ‖p − f ‖∞ <

1

2

)
but no uniform bound on ∃n : take fn := sin(nx).
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Necessity of A∃ ‘∃-formula’:

Let (fn) be the usual sequence of spike-functions in C [0, 1], s.t. (fn)

converges pointwise but not uniformly towards 0. Then

BA ` ∀x ∈ [0, 1]∀k ∈ IN∃n ∈ IN∀m ∈ IN(|fn+m(x)| ≤ 2−k),

but no uniform bound on ‘∃n’ (proof based on Σ0
1-LEM).

Uniform bound only if (fn(x)) monotone (Dini): ‘∀m ∈ IN’ superfluous!
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Necessity of Φ(fx) depending on a representative of x :

Consider

BA ` ∀x ∈ IR∃n ∈ IN((n)IR >IR x).

Suppose there would exist an =IR-extensional computable Φ : ININ → IN
producing such a n. Then Φ would represent a continuous and hence

constant function IR → IN which gives a contradiction.
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Unique existence

X ,K Polish, K compact, f : X × K → IR (BA-definable).

MFI transforms uniqueness statements

∀x ∈ X , y1, y2 ∈ K
( 2∧

i=1

f (x , yi ) =IR 0 → dK (y1, y2) =IR 0
)

into moduli of uniqueness Φ : Q∗
+ → Q∗

+

∀x ∈ X , y1, y2 ∈ K , ε > 0
( 2∧

i=1

|f (x , yi )| < Φ(x , ε) → dK (y1, y2) < ε
)
.

Let ŷ ∈ K be the unique root of f (x , ·), yε an ε-root |f (x , yn)| < ε. Then

dK (ŷ , yΦ(x,ε)) < ε).
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Case study: strong unicity in L1-approximation

Pn space of polynomials of degree ≤ n, f ∈ C [0, 1],

‖f ‖1 :=
∫ 1

0
|f |, dist1(f ,Pn) := inf

p∈Pn

‖f − p‖1.

Best approximation in the mean of f ∈ C [0, 1]:

∀f ∈ C [0, 1]∃!pb ∈ Pn

(
‖f − pb‖1 = dist1(f ,Pn)

)
(existence and uniqueness use: WKL!)
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Theorem (K./Paulo Oliva, APAL 2003)

Let dist1(f ,Pn) := inf
p∈Pn

‖f − p‖1 and ω a modulus of uniform continuity

for f .
Ψ(ω, n, ε) := min{ cnε

8(n+1)2 ,
cnε
2 ωn(

cnε
2 )}, where

cn := bn/2c!dn/2e!
24n+3(n+1)3n+1 and

ωn(ε) := min{ω( ε
4 ), ε

40(n+1)4d 1
ω(1) e

}.

Then ∀n ∈ IN, p1, p2 ∈ Pn

∀ε ∈ Q∗
+

( 2∧
i=1

(‖f − pi‖1 − dist1(f ,Pn) ≤ Ψ(ω, n, ε)) → ‖p1 − p2‖1 ≤ ε
)
.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



Theorem (K./Paulo Oliva, APAL 2003)

Let dist1(f ,Pn) := inf
p∈Pn

‖f − p‖1 and ω a modulus of uniform continuity

for f .
Ψ(ω, n, ε) := min{ cnε

8(n+1)2 ,
cnε
2 ωn(

cnε
2 )}, where

cn := bn/2c!dn/2e!
24n+3(n+1)3n+1 and

ωn(ε) := min{ω( ε
4 ), ε

40(n+1)4d 1
ω(1) e

}.

Then ∀n ∈ IN, p1, p2 ∈ Pn

∀ε ∈ Q∗
+

( 2∧
i=1

(‖f − pi‖1 − dist1(f ,Pn) ≤ Ψ(ω, n, ε)) → ‖p1 − p2‖1 ≤ ε
)
.

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



Comments on the result in the L1-case

Ψ provides the first effective version of results due to Bjoernestal

(1975) and Kroó (1978-1981).

Kroó (1978) implies that the ε-dependency in Ψ is optimal.

Ψ allows the first complexity upper bound for the sequence of

best L1-approximations (pn) in Pn of poly-time functions f ∈ C [0, 1]

(P. Oliva, MLQ 2003).
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The nonseparable/noncompact case

Proposition

Let (X , ‖ · ‖) be a strictly convex normed space and C ⊆ X a convex

subset. Then any point x ∈ X has at most one point c ∈ C of minimal

distance, i.e. ‖x − c‖ =dist(x ,C ).

Hence: if X is separable and complete and provably strictly convex and C

compact, then one can extract a modulus of uniqueness.

Observation: compactness only used to extract uniform bound on strict

convexity (= modulus of uniform convexity) from proof of strict

convexity.
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Assume that X is uniformly convex with modulus η.

Then for d ≥dist(x ,C ) we have the following modulus of uniqueness

(K.1990):

Φ(ε) := min

(
1,

ε

4
,
ε

4
· η(ε/(d + 1))

1− η(ε/(d + 1))

)
.

Conclusion: neither compactness nor separability required!
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General logical metatheorems II

Many abstract types of metric structures can be added as atoms:

metric, hyperbolic, CAT(0), δ-hyperbolic, normed, uniformly convex,

Hilbert, ... spaces or IR-trees X : add new base type X , all finite types

over IN,X and a new constant dX representing d etc.

Condition: Defining axioms must have a monotone functional

interpretation.

Counterexamples (to extractibility of uniform bounds): for the classes of

strictly convex (→ uniformly convex) or separable (→ totally bounded)

spaces!
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A formal system for analysis

Types: (i) IN,X are types, (ii) with ρ, τ also ρ → τ is a type.

Functionals of type ρ → τ map type-ρ objects to type-τ objects.

PAω,X is the extension of Peano Arithmetic to all types.

Aω,X :=PAω,X+DC, where

DC: axiom of dependent choice for all types

Implies full comprehension for numbers (higher order arithmetic).

Aω[X , d , . . .] results by adding constants dX , . . . with axioms expressing

that (X , d , . . .) is a nonempty metric, hyperbolic . . . space.
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A warning concerning equality

Extensionality rule (only!):

s =ρ t

r(s) =τ r(t)
,

where only x =IN y primitive equality predicate but for ρ → τ

sX =X tX :≡ dX (x , y) =IR 0IR,

s =ρ→τ t :≡ ∀vρ(s(v) =τ t(v)).
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A novel form of majorization

y , x functionals of types ρ, ρ̂ := ρ[IN/X ] and aX of type X :

x IN &a
IN y IN :≡ x ≥ y

x IN &a
X yX :≡ x ≥ d(y , a).

For complex types ρ → τ this is extended in a hereditary fashion.

Example:

f ∗ &a
X→X f ≡ ∀n ∈ IN, x ∈ X [n ≥ d(a, x) → f ∗(n) ≥ d(a, f (x))].

f : X → X is nonexpansive (n.e.) if d(f (x), f (y)) ≤ d(x , y).

Then λn.n + b &a
X→X f , if d(a, f (a)) ≤ b.

Normed linear case: a := 0X .
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Hyperbolic spaces

Definition (Takahashi,Kirk,Reich)

A hyperbolic space is a triple (X , d ,W ) where (X , d) is metric space

and W : X × X × [0, 1] → X s.t.

(i) d(z ,W (x , y , λ)) ≤ (1− λ)d(z , x) + λd(z , y),

(ii) d(W (x , y , λ),W (x , y , λ̃)) = |λ− λ̃| · d(x , y),

(iii) W (x , y , λ) = W (y , x , 1− λ),

(iv) d(W (x , z , λ),W (y ,w , λ)) ≤ (1− λ)d(x , y) + λd(z ,w).
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CAT(0)-spaces (Gromov) are hyperbolic spaces (X , d ,W ) which

satisfy the CN-inequality of Bruhat-Tits{
d(y0, y1) = 1

2d(y1, y2) = d(y0, y2) →
d(x , y0)

2 ≤ 1
2d(x , y1)

2 + 1
2d(x , y2)

2 − 1
4d(y1, y2)

2.

convex subsets of normed spaces = hyperbolic spaces (X , d ,W )

with two additional axioms (Machado (1973).

Notation: (1− λ)x ⊕ λy := W (x , y , λ).

Small types (over IN,X ): IN, IN → IN, X , IN → X , X → X .
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Theorem (Gerhardy/K.,Trans.Amer.Math.Soc. 2008)

Let P,K be Polish resp. compact metric spaces, A∃ ∃-formula,

τ small. If Aω[X , d ,W ] proves

∀x ∈ P∀y ∈ K∀zτ∃v INA∃(x , y , z , v),

then one can extract a computable Φ : ININ × IN(IN) → IN s.t. the

following holds in every nonempty hyperbolic space: for all representatives

rx ∈ ININ of x ∈ P and all zτ and z∗ ∈ IN(IN) s.t. ∃a ∈ X (z∗ &a
τ z):

∀y ∈ K∃v ≤ Φ(rx , z
∗) A∃(x , y , z , v).

For the bounded cases: K. Trans.AMS 2005.
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As special case of general logical metatheorems due to

Gerhardy/K. (Trans. Amer. Math. Soc. 2008) one has:

Corollary (Gerhardy/K., TAMS 2008)

If Aω[X , d ,W ] proves

∀x ∈ P∀y ∈ K∀z ∈ X∀f : X → X
(
f n.e. → ∃v ∈ INA∃

)
,

then one can extract a computable functional Φ : ININ × IN → IN s.t.

for all x ∈ P, b ∈ IN

∀y ∈ K∀z ∈ X∀f : X → X
(
f n.e. ∧ dX (z , f (z)) ≤ b → ∃v ≤ Φ(rx , b)A∃

)
holds in all nonempty hyperbolic spaces (X , d ,W ).

Normed case: also ‖z‖ ≤ b.
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Mean Ergodic Theorem again

Since Birkhoff’s proof formalizes in Aω[X , ‖ · ‖, η] the following is

guaranteed:

X uniformly convex Banach space with modulus η and f : X → X

nonexpansive linear operator. Let b > 0. Then there is an effective

functional Φ in ε, g , b, η s.t. for all x ∈ X with ‖x‖ ≤ b, all ε > 0, all

g : IN → IN :

∃n ≤ Φ(ε, g , b, η)∀i , j ∈ [n, n + g(n)]
(
‖Ai (x)− Aj(x)‖ < ε

)
.

(see Lecture I)
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Tao also established (without bound) a uniform version (in a special

case) of the Mean Ergodic Theorem as base step for a generalization to

commuting families of operators.

‘We shall establish Theorem 1.6 by “finitary ergodic theory” techniques,

reminiscent of those used in [Green-Tao]...’ ‘The main advantage of

working in the finitary setting ... is that the underlying dynamical system

becomes extremely explicit’...‘In proof theory, this finitisation is known as

Gödel functional interpretation...which is also closely related to the

Kreisel no-counterexample interpretation’

(T. Tao: Norm convergence of multiple ergodic averages for commuting

transformations, Ergodic Theor. and Dynam. Syst. 28, 2008)
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Projections and Weak Compactness without separability

(to appear in: Festschrift for G. Mints)

Aω[X , 〈·, ·〉] does not have nontrivial comprehension over X -type objects

but proves (using countable choice for X -objects) schematically

for definable closed convex subsets (resp. closed linear subspaces)

the existence of unique best approximations (resp. orthogonal

projections),

for linear functionals L : X → IR with definable graph the Riesz

representation theorem,

the weak compactness of B1(0) (here only countable choice for

arithmetical formulas needed and restricted induction).
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A theorem of F.E. Browder

Using projection to the set of all fixed points of a nonexpansive mapping

U : X → X (X Hilbert space) and weak compactness, Browder showed in

1967:

Theorem[F.E. Browder]: For n ∈ IN, v0 ∈ B1(0) let un be the unique

fixed point of the contraction Un(x) := (1− 1
n )U(x)− 1

nv0. Then (un)

converges towards the fixed point of U that is closest to v0.

Corollary by Metatheorem: There is a functional Φ(k, g) (definable by

primitive recursion and bar recursion of lowest type) such that

∀k ∈ IN∀g : IN → IN∃n ≤ Φ(k, g)∀i , j ∈ [n; n + g(n)] (‖ui − uj‖ < 2−k).

Note that Φ does not depend on U, v0 or X !
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Lecture III
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Applications to metric fixed point theory

General context:

(X , d ,W ) is a (non-empty) hyperbolic space.

f : X → X is a nonexpansive mapping.

(λn) is a sequence in [0, 1] that is bounded away from 1 and

divergent in sum.

xn+1 = (1− λn)xn ⊕ λnf (xn) (Krasnoselski-Mann iter.).

Theorem (Ishikawa 1976, Goebel/Kirk 1983)

(Ishikawa I)

If (xn) is bounded, then d(xn, f (xn)) → 0.
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Logical analysis of the proof of Ishikawa’s theorem

Let K ∈ IN and α : IN → IN be such that

(λn)n∈IN ∈ [0, 1− 1

K
]IN and ∀n ∈ IN(n ≤

α(n)∑
i=0

λi ).

Logical metatheorem applied to proof of Ishikawa’s theorem yields

computable Ψ,Φ s.t. for all k ∈ IN and n.e. f

∀i , j ≤ Ψ(K , α, b, b̃, k)
(
d(x , f (x)) ≤ b ∧ d(xi , xj) ≤ b̃

)
→

∀m ≥ Φ(K , α, b, b̃, k)
(
d(xm, f (xm)) < 2−k

)
.

holds in any (nonempty) hyperbolic space (X , d ,W ).
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Theorem (K.2007, K./Leustean AAA 2003)

(X , d ,W ), (λn),K , α as above, f : X → X nonexpansive the following
holds for all ε, b, b̃ > 0 :

If d(x , f (x)) ≤ b and ∀i ≤ Φ∀j ≤ α(Φ,M) (d(xi , xi+j) ≤ b̃)

then ∀n ≥ Φ
(
d(xn, f (xn)) ≤ ε

)
,

where
Φ := Φ(K , α, b, b̃, ε) := α̂

(⌈
b̃·exp

“
K ·

“
b̃+3b

ε +1
””

ε

⌉
−· 1,M

)
,

M :=
⌈

b̃+3b
ε

⌉
,

α̂(0, n) := α̃(0, n), α̂(i + 1, n) := α̃(α̂(i , n), n) with
α̃(i , n) := i + α(i , n) (i , n ∈ IN)

with α s.t.
∀i , n ∈ IN

(
(α(i , n) ≤ α(i + 1, n)) ∧ (n ≤

i+α(i,n)−1∑
s=i

λs)
)
.
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Known uniformity results in the bounded case

blue = hyperbolic, green = dir.nonex., red = both.

Krasnoselski(1955):Xunif.convex,C compact,λk=
1
2
,,no uniform.

Browder/Petryshyn(1967):Xunif.convex,λk = λ, no uniformity.

Groetsch(1972): X unif. convex, general λk , X , no uniformity

Ishikawa (1976): No uniformity

Edelstein/O’Brien (1978): Uniformity w.r.t. x0 ∈ C (λk := λ)

Goebel/Kirk (1982): Uniformity w.r.t. x0 and f . General λk

Kirk/Martinez (1990): Uniformity for unif. convex X , λ := 1/2

Goebel/Kirk (1990): Conjecture: no uniformity w.r.t. C

Baillon/Bruck (1996): Uniformity w.r.t. x0, f , C for λk := λ

Kirk (2001): Uniformity w.r.t. x0, f for constant λ

Kohlenbach (2001): Full uniformity for general λk

K./Leustean (2003): Full uniformity for general λk
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Corollary (K.2007)

(generalizes result by Baillon-Bruck-Reich from 1978) Let (λn) in

[a, b] ⊂ (0, 1).

If lim
n→∞

c(n)

n
→ 0, where c(n) := max{d(x , xj) : j ≤ n},

then

lim
n→∞

d(xn, f (xn)) = 0.

Result optimal: c(n) ≤ K · n not sufficient!

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



Corollary (K.2007)

(generalizes result by Baillon-Bruck-Reich from 1978) Let (λn) in

[a, b] ⊂ (0, 1).

If lim
n→∞

c(n)

n
→ 0, where c(n) := max{d(x , xj) : j ≤ n},

then

lim
n→∞

d(xn, f (xn)) = 0.

Result optimal: c(n) ≤ K · n not sufficient!

Applied Proof Theory: Proof Interpretations and Their Use in Mathematics



Theorem (Ishikawa, Goebel, Kirk)

(Ishikawa II) If previous assumptions and X compact, then (xn)

converges towards a fixed point.

Proof: Since X is compact, (xn) possesses a convergent subsequence

(xnk
). Let x̂ := lim xnk

. Since by Ishikawa I, (xn) (and hence xnk
) is an

asymptotic fixed point sequence and f is continuous, x̂ is a fixed point of

f . The claim now follows from the following easy inequality

∀u ∈ Fix(f )∀n ∈ IN (d(xn+1, u) ≤ d(xn, u)).

Problem: No computable rate of convergence.

Cauchy property ∀∃∀ rather than ∀∃ (asymptotic regularity).

Best possible: Bound on the no-counterexample interpretation:

(H) ∀g : IN → IN∀k∃n∀j1, j2 ∈ [n; n + g(n)](d(xj1 , xj2) < 2−k).
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Logical Metatheorem for Compact Spaces

We add to T [X , d ,W ] compactness via

A constant γ : IN → IN with an axiom expressing that γ is a

modulus of total boundedness.

An axiom C expressing completeness via an operator C that maps

Cauchy sequences to their limit.

The completeness issue is of minor relevance for the case at hand, but

the total boundedness is.
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Two ways of expressing total boundedness

Definition

(first form): Add constants γIN→IN, aIN→X
(·) with the universal axiom

(TOT I) : ∀k ∈ IN, x ∈ X∃n ≤ γ(k)(d(x , an) ≤ 2−k).

Definition

(second form): Add only constant γIN→IN with the universal axiom

(TOT II) : ∀k ∈ IN, x IN→X
(·) ∃i , j(i < j ≤ γ(k)(d(xi , xj) ≤ 2−k).

Corresponding theories T [X , d ,W , C,TOT I] and T [X , d ,W , C,TOT II]
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Discussion

Metatheorems for T [X , d ,W , C,TOT I] produce bounds depending

on majorants for γ a(·). For γ just take γM(n) := max{γ(i) : i ≤ n}
majorizes γ.

For a(·) : equivalent to adding a bound b on the metric d as input.

Metatheorems for T [X , d ,W , C,TOT II] yield bound depending

only on γ but not b.

Benefits of T [X , d ,W , C,TOT I] : can treat statements involving an

ε-net. If only the proof uses such a net: still much easier to

formalize.

Benefits of T [X , d ,W , C,TOT II] : greater uniformity of the

bound.
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Guaranteed by logical metatheorem

From the fact that the proof of

Ishikawa I(xn) ∧ BW(xn) → Ishikawa II(xn)

can be formalized in an appropriate fragment of Aω[X , d ,W , C,TOT II]

it follows:

Theorem

There exists a primitive recursive functional Ψ such that for any rate

of asymptotic regularity Φ and any modulus of total boundedness γ

for C , any g , k :

∃n ≤ Ψ(Φ, γ, g , k)∀j1, j2 ∈ [n; n + g(n)](d(xj1 , xj2) < 2−k).
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Theorem (K., Nonlinear Analysis 2005)

A bound satisfying the previous theorem is given by

Ψ(Φ, γ, g , k) := max
i≤γ(k)

Ψ0(i , k, g ,Φ),

where Ψ0(0, k, g ,Φ) := 0

Ψ0(n + 1, k, g ,Φ) := Φ

(
2−k−2/(max

i≤n
g(Ψ0(i , k, g ,Φ)) + 1)

)
.
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Asymptotically nonexpansive mappings

Let (X , d ,W ) be a hyperbolic space.

Definition (Goebel/Kirk,1972)

f : X → X is said to be asymptotically nonexpansive with sequence

(kn) ∈ [0,∞)IN if lim
n→∞

kn = 0 and

d(f n(x), f n(y)) ≤ (1 + kn)d(x , y), ∀n ∈ IN,∀x , y ∈ X .

x0 := x ∈ X , xn+1 := (1− λn)xn ⊕ λnf
n(xn).
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Theorem (Rhoades,Schu,Qihou,K./Lambov(2004),K./Leustean(2007))

Let (X , d ,W ) uniformly convex hyperbolic space and (kn) ⊂ IR+ with∑
kn < ∞. Let k ∈ IN and λn ∈ [a, b] with 0 < a < b < 1. f : X → X

asymptotically weakly nonexpansive.

If f possesses a fixed point, then d(xn, f (xn))
n→∞→ 0.

Proof uses sequential compactness in the form of

Lemma

Let (an), (bn), (cn) be sequences in IR+ with

an+1 ≤ (1 + bn)an + cn (n ∈ IN)

with
∑

bn < ∞,
∑

cn < ∞. Then (an) is convergent.
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Theorem (K./Leu̧stean, to appear in: JEMS)

(X , d ,W ) uniformly convex with modulus η. f : X → X asymptotically

n.e. with sequence (kn).
∑∞

n=0 kn ≤ K ∈ IN and L ∈ IN, L ≥ 2 s.t.
1
L ≤ λn ≤ 1− 1

L for all n ∈ IN.

Let x ∈ X and b > 0 be such that for any δ > 0 there is p ∈ X with

d(x , p) ≤ b ∧ d(f (p), p) ≤ δ.

Then for all ε ∈ (0, 1] and for all g : IN → IN,

∃N ≤ Φ(K , L, b, η, ε, g)∀m ∈ [N,N + g(N)] (d(xm, f (xm)) < ε) ,

where Φ(K , L, b, η, ε, g) := h(M)(0), h(n) := g(n + 1) + n + 2,

M :=

⌈
3(5KD+D+ 11

2 )
δ

⌉
, D := eK (b + 2) ,

δ := ε
L2F (K) · η

(
(1 + K )D + 1, ε

F (K)((1+K)D+1)

)
,

F (K ) := 2(1 + (1 + K )2(2 + K )).
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Kirk’s theorem for asymptotic contractions

Definition (Kirk JMAA03)

(X , d) metric space. f : X → X is an asymptotic contraction with
moduli Φ,Φn : [0,∞) → [0,∞) if Φ,Φn are continuous, Φ(s) < s for all
s > 0 and

∀n ∈ IN∀x , y ∈ X (d(f n(x), f n(y)) ≤ Φn(d(x , y)),

and Φn → Φ uniformly on the range of d .

Theorem (Kirk JMAA03)

(X , d) complete metric space, f : X → X continuous asymptotic

contraction with some orbit bounded. Then f has a unique fixed point

p ∈ X and (f n(x0)) converges to p for each x0 ∈ X .

(Proof uses ultrapower structures!)
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By proof mining P. Gerhardy (JMAA 2006, communicated by Kirk)

obtained an effective rate of proximity Φ in appropriate moduli

with elementary proof such that for the fixed point p

∀ε > 0∃n ≤ Φ(ε) (d(p, f n(x0)) < ε).

Using the uniformity of Gerhardy’s result, E.M.Briseid (JMAA 2007)

constructed an effective full rate of convergence.

As a consequence of his analysis E.M.Briseid showed that the

(f n(x0)) is redundant to assume: rate of convergence using only

b ≥ d(x , f (x)) (Fixed Point Theory 2007, Int. J. Math. Stat. 2010).

E.M.Briseid showed that for bounded metric spaces the existence of

a x0-uniform rate of convergence implies that f is asymptotically

contractive (JMAA 2007). Also: new uniformity results generalizing

Reich et al (2007).
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a x0-uniform rate of convergence implies that f is asymptotically

contractive (JMAA 2007). Also: new uniformity results generalizing

Reich et al (2007).
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Generalized p-contractive mappings

Definition: [Rhoades 1977] (X , d) metric space and p ∈ IN.

f : X → X is called generalized p-contractive if

∀x , y ∈ X
(
x 6= y → d(f p(x), f p(y)) < diam {x , y , f p(x), f p(y)}

)
.

Theorem: [Kincses/Totik 1990]

(K , d) compact metric space and f : K → K continuous and generalized

p-contractive for some p ∈ IN. Then f has a unique fixed point ξ and for

every x ∈ K lim
n→∞

f n(x) = ξ.
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Definition: [Briseid, J. Nonlinear Convex Anal. 2008]

(X , d) metric space, p ∈ IN. f : X → X is called uniformly generalized

p-contractive with modulus η : Q∗
+ → Q∗

+ if for all x , y ∈, ε ∈ Q∗
+

d(x , y) > ε → d(f p(x), f p(y)) + η(ε) < diam {x , y , f p(x), f p(y)}.

Theorem: [Briseid, J. Nonlinear Convex Anal. 2008] (X , d) complete

metric space and p ∈ IN. f : X → X be a uniformly continuous and

uniformly generalized p-contractive with moduli ω, η. Let (f n(x0)) be

bounded by b ∈ Q∗
+. Then f has a unique fixed point ξ and (f n(x0))

converges to ξ with rate of convergence Φ : Q∗
+ → IN,

Φ(ε) :=

{
pd(b − ε)/ρ(ε)e if b > ε,

0, otherwise

with

ρ(ε) := min

{
η(ε),

ε

2
, η(

1

2
ωp(

ε

2
))

}
.
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Applications in Topological Dynamics

Theorem (Multiple Birkhoff Recurrence)

Let (X , d) be a compact metric space and T1, . . . ,Tk commuting

homeomorphisms of X . Then there exists x ∈ X s.t.

∀ε > 0∃n > 0
k∧

i=1

d(T n
i (x), x) ≤ ε.
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Theorem (Gerhardy, Notre Dame J. of Formal Logic 2008)

Let γ be a modulus of total boundedness of (X , d), T1, . . . ,Tk

commuting homeomorphisms of X with common modulus of uniform

continuity ω and G the group generated from the Ti . Then

∀ε > 0∃N,M > 0
k∧

i=1

min
n≤N

min
g∈GM

d(T n
i (gx), gx) < ε,

N = Nk(ε, γ, ω), M = Mk(ε, γ, ω),

N1(ε, γ, ω) = M1(ε, γ, ω) = γ(ε/2)

Nm+1(ε, γ, ω) = Φm+1
N (γ(ε/2)) · γ(ε/2),

Mm+1(ε, γ, ω) = Φm+1
M (γ(ε/2)) · γ(ε/2),

Φm+1
N (i) = Nm(εm+1

i , γ, ω2),

Φm+1
M (i) = 2Mm(εm+1

i , γ, ω2) + Nm(εm+1
i , γ, ω2),

εm+1
1 = ε/4, εm+1

i+1 = ωΦm+1
N (i)+Φm+1

M (i)(εm+1
i /2).
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Further applications of proof theory to mathematics

Numerous further applications in metric fixed point theory (Briseid,

Gerhardy, Lambov, Leustean, K.) published in:

J.Math.Anal.Appl.(4), Nonlinear Analysis (2),

Numer.Funct.Anal.Opt.(2), Trans AMS (2), J. EMS (1), Convex

Analysis (1), Abstr.Appl.Anal.(1), Fixed Point Theory (1), Proc.

Fixed Point Theory (1).

New results on Hilbert’s 17th problem (Delzell, Inventiones Math.

etc.)

Proof theory and Ramsey’s theorem for pairs: see the talk be A.

Kreuzer at this meeting (Wednesday 14.00).
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Ulrich Kohlenbach presents an applied form of proof theory that 
has led in recent years to new results in number theory, approxi-
mation theory, nonlinear analysis, geodesic geometry and ergodic 
theory (among others). This applied approach is based on logical 
transformations (so-called proof interpretations) and concerns 
the extraction of effective data (such as bounds) from prima facie 
ineffective proofs as well as new qualitative results such as inde-
pendence of solutions from certain parameters, generalizations  
of proofs by elimination of premises.
The book first develops the necessary logical machinery empha-
sizing novel forms of Gödel‘s famous functional (‚Dialectica‘) 
interpretation. It then establishes general logical metatheorems 
that connect these techniques with concrete mathematics. Finally, 
two extended case studies (one in approximation theory and one 
in fixed point theory) show in detail how this machinery can be 
applied to concrete proofs in different areas of mathematics.
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