#### Linearity and pairs of geometric structures

#### Yevgeniy Vasilyev

Sir Wilfred Grenfell College Memorial University of Newfoundland

joint work with Alexander Berenstein, Universidad de los Andes

Logic Colloquium 2009, Sofia August 2, 2009

### Geometric theories

#### Definition

A first order theory T is called *geometric* if

- in any model of *T*, *acl* satisfies the exchange property (i.e. *acl* induces a pregeometry)
- T eliminates quantifier ∃<sup>∞</sup> (equivalently, for any φ(x, ȳ) there is n ∈ ω such that whenever |φ(M, ā)| > n, φ(M, ā) is infinite)

#### **Examples**

- strongly minimal theories
- supersimple SU-rank 1 theories
- o-minimal theories extending DLO
- superrosy theories of thorn-rank 1 eliminating  $\exists^\infty$

### Geometric theories

#### Definition

A first order theory T is called *geometric* if

- in any model of *T*, *acl* satisfies the exchange property (i.e. *acl* induces a pregeometry)
- T eliminates quantifier ∃<sup>∞</sup> (equivalently, for any φ(x, ȳ) there is n ∈ ω such that whenever |φ(M, ā)| > n, φ(M, ā) is infinite)

#### **Examples**

- strongly minimal theories
- supersimple SU-rank 1 theories
- o-minimal theories extending DLO
- superrosy theories of thorn-rank 1 eliminating  $\exists^\infty$

# Local modularity

#### Definition

### A pregeometry (X, cl) is *modular* if for any $A, B \subset X$

 $A \bigcup_{cl(A) \cap cl(B)} B.$ 

#### Definition

A geometric theory T is *locally modular*, if in a sufficiently saturated model M of T there exists a small C such that for any  $A, B \subset M$ 

 $A \bigcup_{acl(AC) \cap acl(BC)} B$ 

(i.e.  $(M, acl(-\cup C))$  is a modular pregeometry

# Local modularity

#### Definition

A pregeometry (X, cl) is *modular* if for any  $A, B \subset X$ 

$$A \bigcup_{cl(A)\cap cl(B)} B.$$

#### Definition

A geometric theory T is *locally modular*, if in a sufficiently saturated model M of T there exists a small C such that for any  $A, B \subset M$ 

 $A \bigcup_{acl(AC) \cap acl(BC)} B.$ 

ヘロア 人間 アメヨア ヘヨア

Э

(i.e.  $(M, acl(-\cup C))$  is a modular pregeometry)

- T strongly minimal.
  - The following are equivalent:
    - (a) T is locally modular
    - (b) *T* is one-based  $(A igstyle _{acl^{eq}(A) \cap acl^{eq}(B)} B$ , or  $Cb(\bar{a}/A) \subset acl^{eq}(\bar{a}))$
    - (c) T is linear (whenever U(ab/A) = 1,  $U(Cb(ab/A)) \le 1$ )
  - $T \omega$ -categorical  $\Rightarrow T$  is locally modular
  - *T* locally modular ⇒ the *geometry* induced by *acl* in *T* is either trivial, or projective or affine over a division ring (finite field, if *T* is ω-categorical)
  - *T* locally modular, nontrivial ⇒ *T* interprets an infinite

     abelian group.

- T strongly minimal.
  - The following are equivalent:
    - (a) T is locally modular
    - (b) *T* is one-based  $(A igstyle _{acl^{eq}(A) \cap acl^{eq}(B)} B$ , or  $Cb(\bar{a}/A) \subset acl^{eq}(\bar{a}))$
    - (c) T is linear (whenever U(ab/A) = 1,  $U(Cb(ab/A)) \le 1$ )
  - $T \ \omega$ -categorical  $\Rightarrow T$  is locally modular
  - T locally modular ⇒ the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)
  - *T* locally modular, nontrivial ⇒ *T* interprets an infinite

     abelian group.

- T strongly minimal.
  - The following are equivalent:
    - (a) T is locally modular
    - (b) *T* is one-based  $(A igstyle _{acl^{eq}(A) \cap acl^{eq}(B)} B$ , or  $Cb(\bar{a}/A) \subset acl^{eq}(\bar{a}))$
    - (c) T is linear (whenever U(ab/A) = 1,  $U(Cb(ab/A)) \le 1$ )
  - $T \ \omega$ -categorical  $\Rightarrow T$  is locally modular
  - T locally modular ⇒ the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)
  - *T* locally modular, nontrivial ⇒ *T* interprets an infinite

     abelian group.

- T strongly minimal.
  - The following are equivalent:
    - (a) T is locally modular
    - (b) *T* is one-based  $(A igstyle _{acl^{eq}(A) \cap acl^{eq}(B)} B$ , or  $Cb(\bar{a}/A) \subset acl^{eq}(\bar{a}))$
    - (c) T is linear (whenever U(ab/A) = 1,  $U(Cb(ab/A)) \le 1$ )
  - $T \ \omega$ -categorical  $\Rightarrow T$  is locally modular
  - T locally modular ⇒ the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)
  - *T* locally modular, nontrivial ⇒ *T* interprets an infinite
     abelian group.

- T supersimple of SU-rank 1.
  - T locally modular  $\Rightarrow$  T linear
  - T linear  $\iff T$  one-based
  - *T* linear ⇒ locally modular (example: random subset of a vector space over a finite field)

- T supersimple of SU-rank 1.
  - T locally modular  $\Rightarrow$  T linear
  - T linear  $\iff$  T one-based
  - *T* linear ⇒ locally modular (example: random subset of a vector space over a finite field)

- T supersimple of SU-rank 1.
  - T locally modular  $\Rightarrow$  T linear
  - T linear  $\iff T$  one-based
  - *T* linear ⇒ locally modular (example: random subset of a vector space over a finite field)

- T supersimple of SU-rank 1.
  - T locally modular  $\Rightarrow$  T linear
  - T linear  $\iff$  T one-based
  - *T* linear ⇒ locally modular (example: random subset of a vector space over a finite field)

#### What about the geometry?

- V. (using pairs): *T* linear ⇒ the geometry of *T* is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if *T* is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank 1 ⇒ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)

 De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): *T* linear, nontrivial and ω-categorical ⇒ *T* interprets an infinite vector space over a finite field

What about the geometry?

- V. (using pairs): *T* linear ⇒ the geometry of *T* is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if *T* is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank 1 ⇒ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)

 De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): *T* linear, nontrivial and ω-categorical ⇒ *T* interprets an infinite vector space over a finite fie

What about the geometry?

- V. (using pairs): *T* linear ⇒ the geometry of *T* is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if *T* is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank 1 ⇒ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)

 De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): *T* linear, nontrivial and ω-categorical ⇒ *T* interprets an infinite vector space over a finite field

What about the geometry?

- V. (using pairs): *T* linear ⇒ the geometry of *T* is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if *T* is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank 1 ⇒ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)

 De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): *T* linear, nontrivial and ω-categorical ⇒ *T* interprets an infinite vector space over a finite field.

#### T o-minimal extending DLO.

#### Trichotomy Theorem (Peterzil, Starchenko)

Let M be an  $\omega_1$ -saturated model of T. Then for any  $a \in M$  exactly one of the following holds:

(1) a is trivial;

(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;

(3) the structure that *M* induces on some convex neighborhood of *a* is that of an o-minimal expansion of a real closed field.

#### Definition

T is *linear*, if any  $a \in M \models T$  satisfies (1) or (2) (equivalently, if T does not interpret an infinite field).

T o-minimal extending DLO.

Trichotomy Theorem (Peterzil, Starchenko)

Let M be an  $\omega_1$ -saturated model of T. Then for any  $a \in M$  exactly one of the following holds:

(1) a is trivial;

(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;

(3) the structure that M induces on some convex neighborhood of a is that of an o-minimal expansion of a real closed field.

#### Definition

T is *linear*, if any  $a \in M \models T$  satisfies (1) or (2) (equivalently, if T does not interpret an infinite field).

T o-minimal extending DLO.

Trichotomy Theorem (Peterzil, Starchenko)

Let M be an  $\omega_1$ -saturated model of T. Then for any  $a \in M$  exactly one of the following holds:

(1) a is trivial;

(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;

(3) the structure that M induces on some convex neighborhood of a is that of an o-minimal expansion of a real closed field.

#### Definition

T is *linear*, if any  $a \in M \models T$  satisfies (1) or (2) (equivalently, if T does not interpret an infinite field).

# T is linear $\iff$ any interpretable normal family of plane curves in T has dimension $\le 1$ (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

#### Theorem (Loveys, Peterzil)

Any linear o-minimal expansion of  $Th(\mathbb{R}, +, <)$  is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

T is linear  $\iff$  any interpretable normal family of plane curves in T has dimension  $\le 1$  (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

#### **Theorem** (Loveys, Peterzil)

Any linear o-minimal expansion of  $Th(\mathbb{R}, +, <)$  is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

T is linear  $\iff$  any interpretable normal family of plane curves in T has dimension  $\le 1$  (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

#### Theorem (Loveys, Peterzil)

Any linear o-minimal expansion of  $Th(\mathbb{R}, +, <)$  is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

#### T o-minimal extending DLO.

T locally modular  $\Rightarrow$  T linear

But the converse does not hold!

#### Example (Loveys, Peterzil)

 $T = Th(\mathbb{R}, +, 0, 1, f|_{(-1,1)})$ , where  $f(x) = \pi x$ . T is o-minimal and linear, but not locally modular (and not 1-based)

- T o-minimal extending DLO.
- T locally modular  $\Rightarrow$  T linear

But the converse does not hold!

Example (Loveys, Peterzil)

 $T = Th(\mathbb{R}, +, 0, 1, f|_{(-1,1)})$ , where  $f(x) = \pi x$ . T is o-minimal and linear, but not locally modular (and not 1-based)

・ロト ・ 日本・ 小田 ト ・ 田 ・ うらぐ

T o-minimal extending DLO.

T locally modular  $\Rightarrow$  T linear

But the converse does not hold!

#### Example (Loveys, Peterzil)

 $T = Th(\mathbb{R}, +, 0, 1, f|_{(-1,1)})$ , where  $f(x) = \pi x$ . T is o-minimal and linear, but not locally modular (and not 1-based)

T o-minimal extending DLO.

T locally modular  $\Rightarrow$  T linear

But the converse does not hold!

#### Example (Loveys, Peterzil)

 $T = Th(\mathbb{R}, +, 0, 1, f|_{(-1,1)})$ , where  $f(x) = \pi x$ . T is o-minimal and linear, but not locally modular (and not 1-based)

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any *d* between *b* and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2,$ so if we work over d, we can take  $c = f(d - c_1) + c_2.$ 

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any *d* between *b* and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2,$ so if we work over d, we can take  $c = f(d - c_1) + c_2.$ 

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any d between b and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2,$ so if we work over d, we can take  $c = f(d - c_1) + c_2.$ 

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any d between b and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2,$ so if we work over d, we can take  $c = f(d - c_1) + c_2.$ 

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any *d* between *b* and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2$ , so if we work over d, we can take  $c = f(d - c_1) + c_2$ .

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any *d* between *b* and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2$ , so if we work over d, we can take  $c = f(d - c_1) + c_2$ .

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

Note: modularity  $\iff$  whenever  $a \in cl(b, c_1, \ldots, c_n)$ , there is  $c \in cl(c_1, \ldots, c_n)$  such that  $a \in cl(b, c)$ 

Take  $a = f(b - c_1) + c_2$  such that  $b, c_1, c_2$  are independent,  $|b - c_1| < 1$  and  $b, c_1 > n$  for any  $n \in \mathbb{N}$ .

Then  $a \in acl(b, c_1, c_2)$ , but there is no  $c \in acl(c_1, c_2)$  with  $a \in acl(b, c)$ .

Consider any *d* between *b* and  $c_1$ :

 $a = f(b - d + d - c_1) + c_2 = f(b - d) + f(d - c_1) + c_2$ , so if we work over d, we can take  $c = f(d - c_1) + c_2$ .

Local modularity fails: if we add a *small* set D, we can always find  $b, c_1$  such that there is no  $d \in D$  between b and  $c_1$ .

### Elementary pairs

T a first order theory, L = L(T),  $L_P = L \cup \{P\}$ .

#### Definition

Elementary pair of models of T (T-pair) is an  $L_P$ -structure (M, P), where P is a new unary relation distinguishing an elementary substructure of M (i.e.  $P(M) \leq M$ ).

The class of all such pairs is axiomatizable in L<sub>P</sub>.

### Elementary pairs

T a first order theory, L = L(T),  $L_P = L \cup \{P\}$ .

#### Definition

Elementary pair of models of T (T-pair) is an  $L_P$ -structure (M, P), where P is a new unary relation distinguishing an elementary substructure of M (i.e.  $P(M) \leq M$ ).

The class of all such pairs is axiomatizable in  $L_P$ .
# Pairs in the strongly minimal case

T strongly minimal.

 $T_P$  = the theory of all T-pairs (M, P) with dim(M/P(M)) infinite.

 $T_P$  is complete, and coincides with Poizat's theory of "belles paires".

#### Theorem (Buechler)

 $T_P$  is  $\omega$ -stable and has U-rank 1 iff T is trivial U-rank 2 iff T is non-trivial and locally modular (linear) U-rank  $\omega$  otherwise.

# Pairs in the strongly minimal case

T strongly minimal.

 $T_P$  = the theory of all T-pairs (M, P) with dim(M/P(M)) infinite.

 $\mathcal{T}_{\mathcal{P}}$  is complete, and coincides with Poizat's theory of "belles paires" .

#### Theorem (Buechler)

 $T_P$  is  $\omega$ -stable and has U-rank 1 iff T is trivial U-rank 2 iff T is non-trivial and locally modular (linear) U-rank  $\omega$  otherwise.

T supersimple of SU-rank 1.

"Beautiful pairs" (where M is  $|P(M)|^+$ -saturated) do not behave well in unstable case.

#### Definition

A pair (M, P) of models of T is *lovely*, if any nonalgebraic 1-type q(x, A) (in T) over a small  $A \subset M$  has realizations

- in *P*(*M*) (coheir property)
- and in  $M \setminus acl_L(A \cup P(M))$  (extension property).

(generalized later to the simple case by Ben Yaacov, Pillay and V.)

T supersimple of SU-rank 1.

"Beautiful pairs" (where M is  $|P(M)|^+$ -saturated) do not behave well in unstable case.

### Definition

A pair (M, P) of models of T is *lovely*, if any nonalgebraic 1-type q(x, A) (in T) over a small  $A \subset M$  has realizations

- in *P*(*M*) (coheir property)
- and in  $M \setminus acl_L(A \cup P(M))$  (extension property).

(generalized later to the simple case by Ben Yaacov, Pillay and V.)

T supersimple of SU-rank 1.

"Beautiful pairs" (where M is  $|P(M)|^+$ -saturated) do not behave well in unstable case.

### Definition

A pair (M, P) of models of T is *lovely*, if any nonalgebraic 1-type q(x, A) (in T) over a small  $A \subset M$  has realizations

- in *P*(*M*) (coheir property)
- and in  $M \setminus acl_L(A \cup P(M))$  (extension property).

(generalized later to the simple case by Ben Yaacov, Pillay and V.)



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

# Basic properties of lovely pairs in the SU-rank 1 case

#### Definition

 $A \subset (M, P)$  is *P*-independent, if  $A igsquirepsilon_{P(A)} P(M)$ .

### **Proposition** (V.)

- any T-pair embeds in a lovely one (in a P-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free *L<sub>P</sub>*-type of *P*-independent tuple in a lovely pair determines its *L<sub>P</sub>*-type

 lovely *T*-pairs = sufficiently saturated models of their (complete) theory *T<sub>P</sub>*

#### Theorem (V.)

 $T_P$  is supersimple of SU-rank 1, 2 or  $\omega$ .

# Basic properties of lovely pairs in the SU-rank 1 case

#### Definition

 $A \subset (M, P)$  is *P*-independent, if  $A igsquire _{P(A)} P(M)$ .

### **Proposition** (V.)

- any *T*-pair embeds in a lovely one (in a *P*-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L<sub>P</sub>-type of P-independent tuple in a lovely pair determines its L<sub>P</sub>-type

• lovely T-pairs = sufficiently saturated models of their (complete) theory  $T_P$ 

#### Theorem (V.)

 $T_P$  is supersimple of SU-rank 1, 2 or  $\omega$ .

# Basic properties of lovely pairs in the SU-rank 1 case

#### Definition

 $A \subset (M, P)$  is *P*-independent, if  $A \perp_{P(A)} P(M)$ .

### **Proposition** (V.)

- any *T*-pair embeds in a lovely one (in a *P*-independent way)
- lovely *T*-pairs are elementarily equivalent
- quantifier free L<sub>P</sub>-type of P-independent tuple in a lovely pair determines its L<sub>P</sub>-type
- lovely T-pairs = sufficiently saturated models of their (complete) theory  $T_P$

#### Theorem (V.)

 $T_P$  is supersimple of SU-rank 1, 2 or  $\omega$ .

# Linearity and lovely pairs in the SU-rank 1 case

We have the following characterization of linearity:

### **Theorem**(V.)

For an SU-rank 1 theory T the following are equivalent:

```
(a) T is linear
```

- (b) T is 1-based
- (c)  $T_P$  has SU-rank  $\leq 2$  (=2 if non-trivial)
- (d)  $acl_L = acl_{L_P}$  in  $T_P$

(e) for some (any) lovely pair (M, P) the pregeometry  $(M, acl(-\cup P(M)))$  is modular

(f)  $T_P$  is model complete

# Thus linearity $\iff$ modularity of localization at P(M) (this is weaker than local modularity)

 $acl(-\cup P(M))$  is sometimes called the *small closure*, or scl(-).

What about the geometry (M/P, cl) of the small closure?

#### Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

Thus linearity  $\iff$  modularity of localization at P(M) (this is weaker than local modularity)

 $acl(-\cup P(M))$  is sometimes called the *small closure*, or scl(-).

What about the geometry (M/P, cl) of the small closure?

#### Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

Thus linearity  $\iff$  modularity of localization at P(M) (this is weaker than local modularity)

 $acl(-\cup P(M))$  is sometimes called the *small closure*, or scl(-).

What about the geometry (M/P, cl) of the small closure?

#### Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

Thus linearity  $\iff$  modularity of localization at P(M) (this is weaker than local modularity)

 $acl(-\cup P(M))$  is sometimes called the *small closure*, or scl(-).

What about the geometry (M/P, cl) of the small closure?

#### Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

Thus linearity  $\iff$  modularity of localization at P(M) (this is weaker than local modularity)

 $acl(-\cup P(M))$  is sometimes called the *small closure*, or scl(-).

What about the geometry (M/P, cl) of the small closure?

#### Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

### **Theorem** (V.)

Let T be a linear SU-rank 1 theory. Then

- (*M*/*P*, *cl*) is a disjoint union of trivial geometries and/or projective geometries over division rings.
- The original geometry of *M* is a disjoint union of "subgeometries" of projective geometries over division rings.
- In the  $\omega$ -categorical case:
  - $T_P$  is  $\omega$ -categorical iff T is linear
  - the division rings are finite fields, and the corresponding vector spaces are definable in  $(T_P)^{eq}$ .

#### Alternative approach via canonical bases (De Piro, Kim)

The geometry of a non-trivial linear SU-rank 1 Lascar strong type D can be extended to a projective geometry over division ring by adding canonical bases of surfaces in  $D^3$ . In the  $\omega$ -categorical case, they deduce definability of vector spaces in  $T^{eq}$ .

# Pairs in the o-minimal case

T o-minimal expansion of  $Th(\mathbb{R}, +, <, 0)$ .

#### Definition

A T-pair (M, P) is *dense*, if  $P(M) \neq M$  and is P(M) is dense in M.

### Fact (van den Dries)

(a) Any *T*-pair embeds in a dense pair.
(b) Any two dense pairs are elementarily equivalent.
(c) The (complete) theory of dense pairs *T<sup>d</sup>* has quantifier elimination down to ∃*x* ∈ *P*.

Note: same is true for lovely pairs of SU-rank 1 structures.

(日) (同) (三) (三) (三) (○) (○)

# Pairs in the o-minimal case

T o-minimal expansion of  $Th(\mathbb{R}, +, <, 0)$ .

#### Definition

A T-pair (M, P) is *dense*, if  $P(M) \neq M$  and is P(M) is dense in M.

### Fact (van den Dries)

(a) Any *T*-pair embeds in a dense pair.
(b) Any two dense pairs are elementarily equivalent.
(c) The (complete) theory of dense pairs *T<sup>d</sup>* has quantifier elimination down to ∃*x* ∈ *P*.

Note: same is true for lovely pairs of SU-rank 1 structures.

# Pairs of geometric structures

#### T geometric.

#### We define lovely pairs as in the SU-rank 1 case:

### Definition

A pair (M, P) of models of T is *lovely* if any nonalgebraic 1-type q(x, A) (in T) over a small  $A \subset M$  has realizations

- in *P*(*M*) (coheir property)
- and in  $M \setminus acl_L(A \cup P(M))$  (extension property).

# Pairs of geometric structures

T geometric.

We define lovely pairs as in the SU-rank 1 case:

### Definition

A pair (M, P) of models of T is *lovely* if any nonalgebraic 1-type q(x, A) (in T) over a small  $A \subset M$  has realizations

- in *P*(*M*) (coheir property)
- and in  $M \setminus acl_L(A \cup P(M))$  (extension property).

# Basic properties

As before, we have:

- any *T*-pair embeds in a lovely one (in a *P*-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L<sub>P</sub>-type of P-independent tuple in a lovely pair determines its L<sub>P</sub>-type

• lovely T-pairs = sufficiently saturated models of their (complete) theory  $T_P$ 

#### Lovely pair notion agrees with the old one in the SU-rank 1 case.

For o-minimal T (extending DLO),  $T_P$  is exactly  $T^d$ , the theory of dense pairs. So, in the o-minimal case, lovely pairs = sufficiently saturated dense pairs.

#### **Theorem** (Berenstein, Ealy, Günaydin)

The theory of dense pairs of models of an o-minimal expansion of  $(\mathbb{R}, +, <)$  is superrosy of thorn rank  $\leq \omega$ .

This was generalized:

#### Theorem (Boxall)

Let T be superrosy of thorn rank 1, with elimination of  $\exists^{\infty}$ . Then  $T_P$  is superrosy, of thorn-rank  $\leq \omega$ .

Lovely pair notion agrees with the old one in the SU-rank 1 case.

For o-minimal T (extending DLO),  $T_P$  is exactly  $T^d$ , the theory of dense pairs.

So, in the o-minimal case, lovely pairs = sufficiently saturated dense pairs.

#### **Theorem** (Berenstein, Ealy, Günaydin)

The theory of dense pairs of models of an o-minimal expansion of  $(\mathbb{R},+,<)$  is superrosy of thorn rank  $\leq \omega$ .

This was generalized:

#### Theorem (Boxall)

Let T be superrosy of thorn rank 1, with elimination of  $\exists^{\infty}$ . Then  $T_P$  is superrosy, of thorn-rank  $\leq \omega$ .

Lovely pair notion agrees with the old one in the SU-rank 1 case.

For o-minimal T (extending DLO),  $T_P$  is exactly  $T^d$ , the theory of dense pairs.

So, in the o-minimal case, lovely pairs = sufficiently saturated dense pairs.

#### Theorem (Berenstein, Ealy, Günaydin)

The theory of dense pairs of models of an o-minimal expansion of  $(\mathbb{R},+,<)$  is superrosy of thorn rank  $\leq \omega.$ 

This was generalized:

#### Theorem (Boxall)

Let T be superrosy of thorn rank 1, with elimination of  $\exists^{\infty}$ . Then  $T_P$  is superrosy, of thorn-rank  $\leq \omega$ .

Lovely pair notion agrees with the old one in the SU-rank 1 case.

For o-minimal T (extending DLO),  $T_P$  is exactly  $T^d$ , the theory of dense pairs.

So, in the o-minimal case, lovely pairs = sufficiently saturated dense pairs.

#### **Theorem** (Berenstein, Ealy, Günaydin)

The theory of dense pairs of models of an o-minimal expansion of  $(\mathbb{R},+,<)$  is superrosy of thorn rank  $\leq \omega$ .

This was generalized:

### **Theorem** (Boxall)

Let T be superrosy of thorn rank 1, with elimination of  $\exists^{\infty}$ . Then  $T_P$  is superrosy, of thorn-rank  $\leq \omega$ .

# Weak local modularity

### **Theorem** (Berenstein, V.)

Let T be a geometric theorem, and let  $T_P$  be its lovely pairs expansion. The the following are equivalent.

- for some (any) lovely pair (M, P) the pregeometry  $(M, acl(-\cup P(M))) = (M, scl)$  is modular
- $acl_L = acl_{L_P}$  in  $T_P$
- for any (small) sets A, B in a (sufficiently saturated) model M of T, there is (small)  $C \subset M$  such that  $C \perp_{\emptyset} AB$  and  $A \perp_{acl(AC) \cap acl(BC)} B$

#### Definition

We call a geometric theory *T* satisfying the equivalent conditions above *weakly locally modular*.

# Weak local modularity

### **Theorem** (Berenstein, V.)

Let T be a geometric theorem, and let  $T_P$  be its lovely pairs expansion. The the following are equivalent.

- for some (any) lovely pair (M, P) the pregeometry  $(M, acl(-\cup P(M))) = (M, scl)$  is modular
- $acl_L = acl_{L_P}$  in  $T_P$
- for any (small) sets A, B in a (sufficiently saturated) model M of T, there is (small)  $C \subset M$  such that  $C \perp_{\emptyset} AB$  and  $A \perp_{acl(AC) \cap acl(BC)} B$

#### Definition

We call a geometric theory T satisfying the equivalent conditions above *weakly locally modular*.

イロン 人間 とくほ とくほ とうほ

nac

# Why weak?

Local modularity:

there is C such that for any  $A, B = A \bigcup_{acl(AC) \cap acl(BC)} B$ .

Weak local modularity:

for any A, B there is  $C \, \bigcup_{\emptyset} AB$  such that  $A \, \bigcup_{acl(AC) \cap acl(BC)} B$ .

# SU-rank 1 and o-minimal cases

It follows from the theorem above that for an SU-rank 1 theory T, weak local modularity = linearity.

#### **Proposition** (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then T is weakly locally modular iff T is linear (i.e. has the CF-property, or, equivalently, does not interpret an infinite field).

### Linearity in thorn-rank 1 case

### **Proposition** (Berenstein, V.)

Let T be superrosy of thorn-rank 1, eliminating  $\exists^{\infty}$ , and assume it is weakly locally modular. Then  $T_P$  is superrosy of thorn-rank  $\leq 2$ .

Converse still open (true in SU-rank 1 case).

### Linearity in thorn-rank 1 case

#### **Proposition** (Berenstein, V.)

Let T be superrosy of thorn-rank 1, eliminating  $\exists^{\infty}$ , and assume it is weakly locally modular. Then  $T_P$  is superrosy of thorn-rank  $\leq 2$ .

Converse still open (true in SU-rank 1 case).

# Trichotomy and the rank of the pair

#### **Theorem** (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then  $T_P$  is superrosy of thorn rank 1, 2 or  $\omega$ . Moreover, for any lovely pair (M, P) of models of T and for any  $a \in M$  we have:

- If  $a \in M$  is trivial,  $U(tp_P(a)) \leq 1 \ (=1 \text{ iff } a \notin dcl(\emptyset)).$
- If  $a \notin P(M)$  is non-trivial, then  $U(tp_P(a)) \ge 2$ .
- If M is non-trivial and linear (satisfies the CF property) then (M, P) has thorn-rank 2.
- If M induces the structure of an o-minimal expansion of a real closed field in a neighborhood of a ∉ P(M), then U(tp<sub>P</sub>(a)) = ω.

So, as in the SU-rank 1 case, linearity (weak local modularity) of T is equivalent to  $T_P$  having rank  $\leq 2$ .

# Trichotomy and the rank of the pair

#### **Theorem** (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then  $T_P$  is superrosy of thorn rank 1, 2 or  $\omega$ . Moreover, for any lovely pair (M, P) of models of T and for any  $a \in M$  we have:

- If  $a \in M$  is trivial,  $U(tp_P(a)) \leq 1 \ (=1 \text{ iff } a \notin dcl(\emptyset)).$
- If  $a \notin P(M)$  is non-trivial, then  $U(tp_P(a)) \ge 2$ .
- If M is non-trivial and linear (satisfies the CF property) then (M, P) has thorn-rank 2.
- If M induces the structure of an o-minimal expansion of a real closed field in a neighborhood of a ∉ P(M), then U(tp<sub>P</sub>(a)) = ω.

So, as in the SU-rank 1 case, linearity (weak local modularity) of T is equivalent to  $T_P$  having rank  $\leq 2$ .

Geometry of weakly locally modular geometric structures

T weakly locally modular.

As in the SU-rank 1 case:

- For any lovely pair (M, P) of models of T, the geometry induced by the small closure acl(−∪P(M)) is a disjoint union of trivial geometries and/or projective geometries over division rings.
- For any M ⊨ T, the geometry of M is a disjoint union of subgeometries of projective geometries over division rings.

### Weak local modularity and the CF property

#### **Proposition** (Berenstein, V.)

Let T be superrosy of thorn-rank 1. Suppose T is weakly locally modular. Then in T there is no interpretable family of plane curves of dimension  $\geq 2$  (CF property).
## Another candidate for linearity: weak one-basedness

### Definition

We call a geometric theory T weakly one-based, if for any  $\bar{a}$  and A (in a sufficiently saturated model of T) there exists  $\bar{a}' \models tp(\bar{a}/A)$  such that  $\bar{a} \downarrow_A \bar{a}'$  and  $\bar{a} \downarrow_{\bar{a}'} A$ .

- *T* weakly one-based ⇒ *T* weakly locally modular (converse still open)
- weak one-basedness coincides with weak local modularity (linearity) both in the SU-rank 1 case, and in the case of an o-minimal expansion of  $(\mathbb{R}, +, <)$ .

## Another candidate for linearity: weak one-basedness

### Definition

We call a geometric theory *T* weakly one-based, if for any  $\bar{a}$  and *A* (in a sufficiently saturated model of *T*) there exists  $\bar{a}' \models tp(\bar{a}/A)$  such that  $\bar{a} \perp_A \bar{a}'$  and  $\bar{a} \perp_{\bar{a}'} A$ .

- *T* weakly one-based ⇒ *T* weakly locally modular (converse still open)
- weak one-basedness coincides with weak local modularity (linearity) both in the SU-rank 1 case, and in the case of an o-minimal expansion of  $(\mathbb{R}, +, <)$ .

### Weak one-basedness and the $\omega\text{-categorical case}$

Recall: for an SU-rank 1  $\omega$ -categorical T,  $T_P$  is  $\omega$ -categorical  $\iff T$  is linear. In this case, if T is non-trivial, it interprets an infinite vector space over a finite field.

#### **Theorem** (Berenstein, V.)

Suppose  ${\mathcal T}$  is a weakly one-based  $\omega\text{-categorical geometric theory.}$  Then

(1)  $T_P$  is  $\omega$ -categorical;

(2) if T is nontrivial and superrosy of thorn rank 1, then  $T_P$  interprets an infinite vector space over a finite field.

# Generic expansions and structure induced on P

#### **Generic Predicate**

Geometricity, weak local modularity and weak one-basedness are preserved under generic predicate expansion, in the sense of Chatzidakis-Pillay.

Structure induced on P

T geometric, (M, P) lovely pair of models of T.

Consider the set P(M) together with the traces of all *L*-definable sets with parameters in *M*. The resulting theory  $T^*$  is again geometric. Moreover, if *T* is weakly locally modular or weakly one-based, then so is  $T^*$ .

# Generic expansions and structure induced on P

#### **Generic Predicate**

Geometricity, weak local modularity and weak one-basedness are preserved under generic predicate expansion, in the sense of Chatzidakis-Pillay.

#### Structure induced on P

T geometric, (M, P) lovely pair of models of T.

Consider the set P(M) together with the traces of all *L*-definable sets with parameters in *M*. The resulting theory  $T^*$  is again geometric. Moreover, if *T* is weakly locally modular or weakly one-based, then so is  $T^*$ .

## Some questions

- Reducts of geometric theories are geometric. Is linearity (weak local modularity, weak one-basedness) preserved under reducts? True for SU-rank 1 theories (*T<sub>P</sub>* having SU-rank ≤ 2 is preserved under reducts) and o-minimal theories extending DLO (by Trichotomy)
- For T superrosy of thorn rank 1 (eliminating  $\exists^{\infty}$ ):
  - are 1, 2 and  $\omega$  the only possible values of the thorn rank of  $T_P$ ? (true for SU-rank 1 and o-minimal theories)

 does T being nontrivial imply that the thorn rank of T<sub>P</sub> is > 1?

## Some questions

- Is weak 1-basedness equivalent to weak local modularity? (true for SU-rank 1 structures and expansions of o-minimal groups)
- If *T* is weakly 1-based or weakly locally modular, and ω-categorical, does *T* interpret an infinite vector space over a finite field?
- For any geometric *T*, does *T<sub>P</sub>* have elimination of ∃<sup>∞</sup>? (true in the SU-rank 1 and o-minimal cases)