Linearity and pairs of geometric structures

Yevgeniy Vasilyev

Sir Wilfred Grenfell College
Memorial University of Newfoundland
joint work with Alexander Berenstein, Universidad de los Andes

Logic Colloquium 2009, Sofia
August 2, 2009

Geometric theories

Definition

A first order theory T is called geometric if

- in any model of T, acl satisfies the exchange property (i.e. acl induces a pregeometry)
- T eliminates quantifier \exists^{∞}
(equivalently, for any $\phi(x, \bar{y})$ there is $n \in \omega$ such that whenever $|\phi(M, \bar{a})|>n, \phi(M, \bar{a})$ is infinite $)$

Examples

- strongly minimal theories
- supersimple SU-rank 1 theor
o-minimal theories extending DLO
- superrosy theories of thorn-rank 1 eliminating $\exists \infty$

Geometric theories

Definition

A first order theory T is called geometric if

- in any model of T, acl satisfies the exchange property (i.e. acl induces a pregeometry)
- T eliminates quantifier \exists^{∞}
(equivalently, for any $\phi(x, \bar{y})$ there is $n \in \omega$ such that whenever $|\phi(M, \bar{a})|>n, \phi(M, \bar{a})$ is infinite $)$

Examples

- strongly minimal theories
- supersimple SU-rank 1 theories
- o-minimal theories extending DLO
- superrosy theories of thorn-rank 1 eliminating $\exists \infty$

Local modularity

Definition

A pregeometry $(X, c l)$ is modular if for any $A, B \subset X$

$$
A \underset{c l(A) \cap c l(B)}{\perp} B .
$$

Definition

A geometric theory T is locally modular,
if in a sufficiently saturated model M of T
there exists a small C such that for any $A, B \subset M$

$$
\operatorname{acl}(A C) \cap a c l(B C)
$$

Local modularity

Definition

A pregeometry $(X, c l)$ is modular if for any $A, B \subset X$

Definition

A geometric theory T is locally modular, if in a sufficiently saturated model M of T there exists a small C such that for any $A, B \subset M$

(i.e. $(M, a c l(-\cup C))$ is a modular pregeometry)

Linearity in the strongly minimal case

T strongly minimal.

- The following are equivalent:
(a) T is locally modular
(b) T is one-based

$$
\left(A \downarrow_{\operatorname{acleq}(A) \cap a c l e q(B)} B, \text { or } C b(\bar{a} / A) \subset \operatorname{acl}^{e q}(\bar{a})\right)
$$

(c) T is linear
$($ whenever $U(a b / A)=1, U(C b(a b / A)) \leq 1)$

- $T \omega$-categorical $\Rightarrow T$ is locally modular
- T locally modular \Rightarrow the geometry induced by acl in T is
either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)
- T locally modular, nontrivial $\Rightarrow T$ interprets an infinite
abelian group.

Linearity in the strongly minimal case

T strongly minimal.

- The following are equivalent:
(a) T is locally modular
(b) T is one-based

$$
\left(A \downarrow_{\operatorname{acleq}(A) \cap a c^{e q}(B)} B, \text { or } C b(\bar{a} / A) \subset \operatorname{acl}^{e q}(\bar{a})\right)
$$

(c) T is linear $($ whenever $U(a b / A)=1, U(C b(a b / A)) \leq 1)$

- $T \omega$-categorical $\Rightarrow T$ is locally modular
- T locally modular \Rightarrow the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)

Linearity in the strongly minimal case

T strongly minimal.

- The following are equivalent:
(a) T is locally modular
(b) T is one-based

$$
\left(A \downarrow_{\operatorname{acleq}(A) \cap a c l e q(B)} B, \text { or } C b(\bar{a} / A) \subset \operatorname{acl}^{e q}(\bar{a})\right)
$$

(c) T is linear $($ whenever $U(a b / A)=1, U(C b(a b / A)) \leq 1)$

- $T \omega$-categorical $\Rightarrow T$ is locally modular
- T locally modular \Rightarrow the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)

Linearity in the strongly minimal case

T strongly minimal.

- The following are equivalent:
(a) T is locally modular
(b) T is one-based

$$
\left(A \downarrow_{\operatorname{acleq}(A) \cap a c l e q(B)} B, \text { or } C b(\bar{a} / A) \subset \operatorname{acl}^{e q}(\bar{a})\right)
$$

(c) T is linear $($ whenever $U(a b / A)=1, U(C b(a b / A)) \leq 1)$

- $T \omega$-categorical $\Rightarrow T$ is locally modular
- T locally modular \Rightarrow the geometry induced by acl in T is either trivial, or projective or affine over a division ring (finite field, if T is ω-categorical)
- T locally modular, nontrivial $\Rightarrow T$ interprets an infinite abelian group.

Linearity in the SU-rank 1 case

T supersimple of SU-rank 1.

- T locally modular $\Rightarrow T$ linear
- T linear $\Longleftrightarrow T$ one-based
- T linear \nRightarrow locally modular
(example: random subset of a vector space over a finite field)
- (Hrushovski) $T \omega$-categorical $\nRightarrow T$ linear

Linearity in the SU-rank 1 case

T supersimple of SU-rank 1.

- T locally modular $\Rightarrow T$ linear
- T linear $\Longleftrightarrow T$ one-based
- T linear \nRightarrow locally modular
(example: random subset of a vector space over a finite field)
- (Hrushovski) $T \omega$-categorical $\nRightarrow T$ linear

Linearity in the SU-rank 1 case

T supersimple of SU-rank 1.

- T locally modular $\Rightarrow T$ linear
- T linear $\Longleftrightarrow T$ one-based
- T linear \nRightarrow locally modular
(example: random subset of a vector space over a finite field)
- (Hrushovski) $T \omega$-categorical $\nRightarrow T$ linear

Linearity in the SU-rank 1 case

T supersimple of SU-rank 1.

- T locally modular $\Rightarrow T$ linear
- T linear $\Longleftrightarrow T$ one-based
- T linear \nRightarrow locally modular
(example: random subset of a vector space over a finite field)
- (Hrushovski) $T \omega$-categorical $\nRightarrow T$ linear

Linearity in the SU-rank 1 case

What about the geometry?

- V. (using pairs): T linear \Rightarrow the geometry of T is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if T is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank $1 \Rightarrow$ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)
- De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): T linear, nontrivial and ω-categorical \Rightarrow T interprets an infinite vector space over a finite field.

Linearity in the SU-rank 1 case

What about the geometry?

- V. (using pairs): T linear \Rightarrow the geometry of T is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if T is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank $1 \Rightarrow$ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)
- De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration): T linear, nontrivial and ω-categorical \Rightarrow T interprets an infinite vector space over a finite field.

Linearity in the SU-rank 1 case

What about the geometry?

- V. (using pairs): T linear \Rightarrow the geometry of T is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if T is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank $1 \Rightarrow$ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)
- De Piro, Kim (using canonical bases); Tomasic, Wagner (using group configuration) T linear, nontrivial and ω-categorical \Rightarrow T interprets an infinite vector space over a finite field.

Linearity in the SU-rank 1 case

What about the geometry?

- V. (using pairs): T linear \Rightarrow the geometry of T is a disjoint union of "subgeometries" of projective geometries over division rings (finite fields, if T is ω-categorical)
- De Piro, Kim (using canonical bases): D a linear Lascar strong type of SU-rank $1 \Rightarrow$ the geometry of D embeds in a projective geometry over a division ring (finite field, if T is ω-categorical)
- De Piro, Kim (using canonical bases);

Tomasic, Wagner (using group configuration):
T linear, nontrivial and ω-categorical \Rightarrow
T interprets an infinite vector space over a finite field.

Linearity in the o-minimal case

T o-minimal extending DLO.
Trichotomy Theorem (Peterzil, Starchenko)
Let M be an ω_{1}-saturated model of T. Then for any $a \in M$ exactly one of the following holds:
(1) a is trivial;
(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;
(3) the structure that M induces on some convex neighborhood of a is that of an o-minimal expansion of a real closed field.

Definition
T is linear if any $a \in M=T$ satisfies (1) or (2) (equivalently, if
T does not interpret an infinite field).

Linearity in the o-minimal case

T o-minimal extending DLO.

Trichotomy Theorem (Peterzil, Starchenko)

Let M be an ω_{1}-saturated model of T. Then for any $a \in M$ exactly one of the following holds:
(1) a is trivial;
(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;
(3) the structure that M induces on some convex neighborhood of a is that of an o-minimal expansion of a real closed field.

Linearity in the o-minimal case

T o-minimal extending DLO.

Trichotomy Theorem (Peterzil, Starchenko)

Let M be an ω_{1}-saturated model of T. Then for any $a \in M$ exactly one of the following holds:
(1) a is trivial;
(2) the structure that M induces on some convex neighborhood of a is that of an ordered vector space over a division ring;
(3) the structure that M induces on some convex neighborhood of a is that of an o-minimal expansion of a real closed field.

Definition

T is linear, if any $a \in M \models T$ satisfies (1) or (2) (equivalently, if T does not interpret an infinite field).

Linearity in the o-minimal case

T is linear \Longleftrightarrow any interpretable normal family of plane curves in T has dimension ≤ 1 (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

Theorem (Loveys, Peterzil)
Any linear a-minimal evnansion of $T h(\mathbb{R},+,<)$ is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

Linearity in the o-minimal case

T is linear \Longleftrightarrow any interpretable normal family of plane curves in T has dimension ≤ 1 (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

Theorem (Loveys, Peterzil) Any linear a-minimal exnansion of $T h(\mathbb{R},+,<)$ is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

Linearity in the o-minimal case

T is linear \Longleftrightarrow any interpretable normal family of plane curves in T has dimension ≤ 1 (CF property)

Characterization of linear o-minimal expansions of divisible abelian groups:

Theorem (Loveys, Peterzil)

Any linear o-minimal expansion of $\operatorname{Th}(\mathbb{R},+,<)$ is a reduct of the theory of an ordered vector space over an ordered division ring (possibly with constants). Conversely, any such reduct is linear.

Linearity in the o-minimal case

T o-minimal extending DLO.
T locally modular $\Rightarrow T$ linear
But the converse does not hold!
Example (Loveys, Peterzil)
$T=T h\left(\mathbb{R},+, 0,1,\left.f\right|_{(-1,1)}\right)$, where $f(x)=\pi x$.
T is o-minimal and linear, but not locally modular
(and not 1-based)

Linearity in the o-minimal case

T o-minimal extending DLO.
T locally modular $\Rightarrow T$ linear
But the converse does not hold!
Example (Loveys, Peterzil)
$T-$ Th(TD $|n, 1 \mathrm{f}|, \ldots$,), where $f(x)=\pi x$.
T is o-minimal and linear, but not locally modular
(and not 1-based)

Linearity in the o-minimal case

T o-minimal extending DLO.
T locally modular $\Rightarrow T$ linear
But the converse does not hold!
Example (Loveys, Peterzil) $T-T h(\mathbb{R}+01 \mathrm{fl}, \ldots, 1)$ where $f(x)=\pi x$.
T is o-minimal and linear, but not locally modular (and not 1-based)

Linearity in the o-minimal case

T o-minimal extending DLO.
T locally modular $\Rightarrow T$ linear
But the converse does not hold!
Example (Loveys, Peterzil)
$T=\operatorname{Th}\left(\mathbb{R},+, 0,1,\left.f\right|_{(-1,1)}\right)$, where $f(x)=\pi x$.
T is o-minimal and linear, but not locally modular (and not 1-based)

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$
Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is $n o c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1} :
$a=f\left(b-d+d-c_{1}\right)+c_{2}=f(b-d)+f\left(d-c_{1}\right)+c_{2}$,
so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.
Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}.

Need to localize at a dense subset!

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$

Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in a d\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1}
$a=f\left(b-d+d-c_{1}\right)+c_{2}=f(b-d)+f\left(d-c_{1}\right)+c_{2}$,
so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.
Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}

Need to localize at a dense subset!

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$

Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$

Consider any d between b and c_{1}

so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.
Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$

Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1}
so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.
Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$
Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1} :
$a=f\left(b-d+d-c_{1}\right)+c_{2}=f(b-d)+f\left(d-c_{1}\right)+c_{2}$, so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.

Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}.

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$
Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1} :
$a=f\left(b-d+d-c_{1}\right)+c_{2}=f(b-d)+f\left(d-c_{1}\right)+c_{2}$, so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.

Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}.

Need to localize at a dense subset!

More on Loveys-Peterzil example

Note: modularity \Longleftrightarrow whenever $a \in c l\left(b, c_{1}, \ldots, c_{n}\right)$, there is $c \in c l\left(c_{1}, \ldots, c_{n}\right)$ such that $a \in c l(b, c)$
Take $a=f\left(b-c_{1}\right)+c_{2}$ such that b, c_{1}, c_{2} are independent, $\left|b-c_{1}\right|<1$ and $b, c_{1}>n$ for any $n \in \mathbb{N}$.

Then $a \in \operatorname{acl}\left(b, c_{1}, c_{2}\right)$, but there is no $c \in \operatorname{acl}\left(c_{1}, c_{2}\right)$ with $a \in \operatorname{acl}(b, c)$.

Consider any d between b and c_{1} :
$a=f\left(b-d+d-c_{1}\right)+c_{2}=f(b-d)+f\left(d-c_{1}\right)+c_{2}$, so if we work over d, we can take $c=f\left(d-c_{1}\right)+c_{2}$.

Local modularity fails: if we add a small set D, we can always find b, c_{1} such that there is no $d \in D$ between b and c_{1}.

Need to localize at a dense subset!

Elementary pairs

T a first order theory, $L=L(T), L_{P}=L \cup\{P\}$.

Definition

Elementary pair of models of T (T-pair) is an L_{p}-structure (M, P), where P is a new unary relation distinguishing an elementary substructure of M (i.e. $P(M) \preceq M$).

Elementary pairs

T a first order theory, $L=L(T), L_{P}=L \cup\{P\}$.

Definition

Elementary pair of models of T (T-pair) is an L_{P}-structure (M, P), where P is a new unary relation distinguishing an elementary substructure of M (i.e. $P(M) \preceq M$).

The class of all such pairs is axiomatizable in L_{P}.

Pairs in the strongly minimal case

T strongly minimal.
$T_{P}=$ the theory of all T-pairs (M, P) with $\operatorname{dim}(M / P(M))$ infinite.
T_{P} is complete, and coincides with Poizat's theory of "belles paires".

Theorem (Buechler)
T_{n} is w-stahle and has
U-rank 1 iff T is trivial
U-rank 2 iff T is non-trivial and locally modular (linear)
U-rank ω otherwise.

Pairs in the strongly minimal case

T strongly minimal.
$T_{P}=$ the theory of all T-pairs (M, P) with $\operatorname{dim}(M / P(M))$ infinite.
T_{P} is complete, and coincides with Poizat's theory of "belles paires".

Theorem (Buechler)

T_{P} is ω-stable and has
U-rank 1 iff T is trivial
U-rank 2 iff T is non-trivial and locally modular (linear) U-rank ω otherwise.

Pairs in the SU-rank 1 case

T supersimple of SU-rank 1.
"Beautiful pairs" (where M is $|P(M)|^{+}$-saturated) do not behave well in unstable case.

Definition

A nair ($M P$) a models of T is lovely if any nonalgebraic 1-type $q(x, A)$ (in T) over a small $A \subset M$ has realizations

- in \quad (M1) (coheir property)
- and in $M \backslash \operatorname{acl}_{L}(A \cup P(M))$ (extension property).

Pairs in the SU-rank 1 case

T supersimple of SU-rank 1.
"Beautiful pairs" (where M is $|P(M)|^{+}$-saturated) do not behave well in unstable case.

Definition

A pair (M, P) of models of T is lovely, if any nonalgebraic 1-type $q(x, A)$ (in T) over a small $A \subset M$ has realizations

- in $P(M)$ (coheir property)
- and in $M \backslash \operatorname{acl}_{L}(A \cup P(M))$ (extension property).

Pairs in the SU-rank 1 case

T supersimple of SU-rank 1.
"Beautiful pairs" (where M is $|P(M)|^{+}$-saturated) do not behave well in unstable case.

Definition

A pair (M, P) of models of T is lovely, if any nonalgebraic 1-type $q(x, A$) (in T) over a small $A \subset M$ has realizations

- in $P(M)$ (coheir property)
- and in $M \backslash \operatorname{acl}_{L}(A \cup P(M))$ (extension property).
(generalized later to the simple case by Ben Yaacov, Pillay and V.)

Pairs in the SU-rank 1 case

Basic properties of lovely pairs in the SU-rank 1 case

Definition

$A \subset(M, P)$ is P-independent, if $A \downarrow_{P(A)} P(M)$.

Proposition (V.)

- any T-pair embeds in a lovely one (in a P-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L_{p}-type of $P_{\text {-independent }}$ tuple in a lovely pair determines its L_{p}-type
- lovely T-pairs = sufficiently saturated models of their (complete) theory T_{P}

Theorem (V.)

Basic properties of lovely pairs in the SU-rank 1 case

Definition

$$
A \subset(M, P) \text { is } P \text {-independent, if } A \downarrow_{P(A)} P(M) \text {. }
$$

Proposition (V.)

- any T-pair embeds in a lovely one (in a P-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L_{P}-type of P-independent tuple in a lovely pair determines its L_{P}-type
- lovely T-pairs = sufficiently saturated models of their (complete) theory T_{P}

[^0]
Basic properties of lovely pairs in the SU-rank 1 case

Definition

$$
A \subset(M, P) \text { is } P \text {-independent, if } A \downarrow_{P(A)} P(M) \text {. }
$$

Proposition (V.)

- any T-pair embeds in a lovely one (in a P-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L_{P}-type of P-independent tuple in a lovely pair determines its L_{p}-type
- lovely T-pairs $=$ sufficiently saturated models of their (complete) theory T_{P}

Theorem (V.)

T_{P} is supersimple of SU-rank 1,2 or ω.

Linearity and lovely pairs in the SU-rank 1 case

We have the following characterization of linearity:

Theorem(V.)

For an SU-rank 1 theory T the following are equivalent:
(a) T is linear
(b) T is 1-based
(c) T_{P} has SU-rank $\leq 2(=2$ if non-trivial)
(d) $a c l_{L}=a c L_{L_{P}}$ in T_{P}
(e) for some (any) lovely pair (M, P) the pregeometry
$(M, a c l(-\cup P(M)))$ is modular
(f) T_{P} is model complete

Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity \Longleftrightarrow modularity of localization at $P(M)$ (this is weaker than local modularity)
$\operatorname{acl}(-\cup P(M))$ is sometimes called the small closure, or scl($(-)$. What about the geometry $(M / P, c l)$ of the small closure? Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

The relation " $|c l(a / P, b / P)| \geq 3$ or $a / P=b / P$ " is an equivalence on $(M / P, c l)$, with no interaction between the classes.

Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity \Longleftrightarrow modularity of localization at $P(M)$ (this is weaker than local modularity)
$\operatorname{acl}(-\cup P(M))$ is sometimes called the small closure, or $\operatorname{scl}(-)$.
What about the geometry $(M / P, c l)$ of the small closure?
Fact
A modular geometry of dimension at least 4, where the closure of
any two points contains a third one, is a projective geometry over
some division ring.

The relation " $|c /(a / P, b / P)| \geq 3$ or $a / P=b / P$ " is an equivalence
on $(M / P, c l)$, with no interaction between the classes.

Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity \Longleftrightarrow modularity of localization at $P(M)$
(this is weaker than local modularity)
$\operatorname{acl}(-\cup P(M))$ is sometimes called the small closure, or $\operatorname{scl}(-)$.
What about the geometry $(M / P, c l)$ of the small closure?

Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity \Longleftrightarrow modularity of localization at $P(M)$ (this is weaker than local modularity)
$\operatorname{acl}(-\cup P(M))$ is sometimes called the small closure, or $\operatorname{scl}(-)$.
What about the geometry $(M / P, c l)$ of the small closure?

Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

The relation " $|c /(a / P, b / P)| \geq 3$ or $a / P=b / P$ " is an equivalence on $(M / P, c l)$, with no interaction between the classes.

Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity \Longleftrightarrow modularity of localization at $P(M)$ (this is weaker than local modularity)
$\operatorname{acl}(-\cup P(M))$ is sometimes called the small closure, or $\operatorname{scl}(-)$.
What about the geometry $(M / P, c l)$ of the small closure?

Fact

A modular geometry of dimension at least 4, where the closure of any two points contains a third one, is a projective geometry over some division ring.

The relation " $|c /(a / P, b / P)| \geq 3$ or $a / P=b / P$ " is an equivalence on $(M / P, c l)$, with no interaction between the classes.

Geometry and lovely pairs of linear SU-rank 1 structures

Theorem (V.)

Let T be a linear SU-rank 1 theory. Then

- $(M / P, c l)$ is a disjoint union of trivial geometries and/or projective geometries over division rings.
- The original geometry of M is a disjoint union of "subgeometries" of projective geometries over division rings.
- In the ω-categorical case:
- T_{P} is ω-categorical iff T is linear
- the division rings are finite fields, and the corresponding vector spaces are definable in $\left(T_{P}\right)^{\text {eq }}$.

Geometry and lovely pairs of linear SU-rank 1 structures

Alternative approach via canonical bases (De Piro, Kim)
The geometry of a non-trivial linear SU-rank 1 Lascar strong type D can be extended to a projective geometry over division ring by adding canonical bases of surfaces in D^{3}. In the ω-categorical case, they deduce definability of vector spaces in $T^{e q}$.

Pairs in the o-minimal case

T o-minimal expansion of $\operatorname{Th}(\mathbb{R},+,<, 0)$.

Definition

A T-pair (M, P) is dense, if $P(M) \neq M$ and is $P(M)$ is dense in M.

Fact (van den Dries)
(a) Any T-pair embeds in a dense pair.
(b) Any two dense pairs are elementarily equivalent.
(c) The (complete) theory of dense pairs T^{d} has quantifier elimination down to $\exists x \in P$.

Pairs in the o-minimal case

T o-minimal expansion of $\operatorname{Th}(\mathbb{R},+,<, 0)$.

Definition

A T-pair (M, P) is dense, if $P(M) \neq M$ and is $P(M)$ is dense in M.

Fact (van den Dries)
(a) Any T-pair embeds in a dense pair.
(b) Any two dense pairs are elementarily equivalent.
(c) The (complete) theory of dense pairs T^{d} has quantifier elimination down to $\exists x \in P$.

Note: same is true for lovely pairs of SU-rank 1 structures.

Pairs of geometric structures

T geometric.
We define lovely pairs as in the SU-rank 1 case:
Definition
A pair (M, P) of models of T is lovely
if any nonalgebraic 1-type $q(x, A)$ (in T) over a small $A \subset M$ has realizations

- in $P(M)$ (coheir property)
- and in $M \backslash$ acl $_{L}(A \cup P(M))$ (e tension property).

Pairs of geometric structures

T geometric.
We define lovely pairs as in the SU-rank 1 case:

Definition

A pair (M, P) of models of T is lovely
if any nonalgebraic 1-type $q(x, A)$ (in T) over a small $A \subset M$ has realizations

- in $P(M)$ (coheir property)
- and in $M \backslash a \operatorname{li}_{L}(A \cup P(M))$ (extension property).

Basic properties

As before, we have:

- any T-pair embeds in a lovely one (in a P-independent way)
- lovely T-pairs are elementarily equivalent
- quantifier free L_{P}-type of P-independent tuple in a lovely pair determines its L_{P}-type
- lovely T-pairs $=$ sufficiently saturated models of their (complete) theory T_{P}

SU-rank 1, o-minimal and thorn rank 1 cases

Lovely pair notion agrees with the old one in the SU-rank 1 case.
For o-minimal T (extending DLO), T_{P} is exactly T^{d}, the theory of
dense pairs.
So, in the o-minimal case, lovely pairs = sufficiently saturated dense pairs.

Theorem (Berenstein, Ealy, Günaydin)
The theory of dense nairs of models of an o-rninimal expansion of $(\mathbb{R},+,<)$ is superrosy of thorn rank $\leq \omega$.

This was generalized:
Thearem (Doxall)
Let T be superrosy of thorn rank 1 , with elimination of \exists^{∞}. Then
T_{P} is superrosy, of thorn-rank $\leq \omega$.

SU-rank 1, o-minimal and thorn rank 1 cases

Lovely pair notion agrees with the old one in the SU-rank 1 case.
For o-minimal T (extending DLO), T_{P} is exactly T^{d}, the theory of dense pairs.
So, in the o-minimal case, lovely pairs $=$ sufficiently saturated dense pairs.

SU-rank 1, o-minimal and thorn rank 1 cases

Lovely pair notion agrees with the old one in the SU-rank 1 case.
For o-minimal T (extending DLO), T_{P} is exactly T^{d}, the theory of dense pairs.
So, in the o-minimal case, lovely pairs $=$ sufficiently saturated dense pairs.

Theorem (Berenstein, Ealy, Günaydin)
The theory of dense pairs of models of an o-minimal expansion of $(\mathbb{R},+,<)$ is superrosy of thorn rank $\leq \omega$.

This was generalized:
\square

Let T be superrosy of thorn rank 1 , with elimination of \exists^{∞}. Then T_{P} is superrosy, of thorn-rank $\leq \omega$.

SU-rank 1, o-minimal and thorn rank 1 cases

Lovely pair notion agrees with the old one in the SU-rank 1 case.
For o-minimal T (extending DLO), T_{P} is exactly T^{d}, the theory of dense pairs.
So, in the o-minimal case, lovely pairs $=$ sufficiently saturated dense pairs.

Theorem (Berenstein, Ealy, Günaydin)
The theory of dense pairs of models of an o-minimal expansion of $(\mathbb{R},+,<)$ is superrosy of thorn rank $\leq \omega$.

This was generalized:

Theorem (Boxall)

Let T be superrosy of thorn rank 1 , with elimination of \exists^{∞}. Then T_{P} is superrosy, of thorn-rank $\leq \omega$.

Weak local modularity

Theorem (Berenstein, V.)

Let T be a geometric theorem, and let T_{P} be its lovely pairs expansion. The the following are equivalent.

- for some (any) lovely pair (M, P) the pregeometry $(M, \operatorname{acl}(-\cup P(M)))=(M, s c l)$ is modular
- $a c_{L}=a c L_{L_{P}}$ in T_{P}
- for any (small) sets A, B in a (sufficiently saturated) model M of T, there is (small) $C \subset M$ such that $C \downarrow_{\emptyset} A B$ and $A \downarrow_{a c l(A C) \cap a c l(B C)} B$

Definition

We call a reometric theory T satisfying the equivalent conditions above weakly locally modular.

Weak local modularity

Theorem (Berenstein, V.)

Let T be a geometric theorem, and let T_{P} be its lovely pairs expansion. The the following are equivalent.

- for some (any) lovely pair (M, P) the pregeometry $(M, \operatorname{acl}(-\cup P(M)))=(M, s c l)$ is modular
- $a^{c_{L}}=a c L_{L_{P}}$ in T_{P}
- for any (small) sets A, B in a (sufficiently saturated) model M of T, there is (small) $C \subset M$ such that $C \downarrow_{\emptyset} A B$ and $A \downarrow_{a c l(A C) \cap a c l(B C)} B$

Definition

We call a geometric theory T satisfying the equivalent conditions above weakly locally modular.

Why weak?

Local modularity:
there is C such that for any $A, B \quad A \downarrow_{a c /(A C) \cap a c /(B C)} B$.

Weak local modularity: for any A, B there is $C \downarrow_{\emptyset} A B$ such that $A \downarrow_{\operatorname{acl}(A C) \cap a c l(B C)} B$.

SU-rank 1 and o-minimal cases

It follows from the theorem above that for an SU-rank 1 theory T, weak local modularity $=$ linearity.

Proposition (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then T is weakly locally modular iff T is linear (i.e. has the CF-property, or, equivalently, does not interpret an infinite field).

Linearity in thorn-rank 1 case

Proposition (Berenstein, V.)

Let T be superrosy of thorn-rank 1 , eliminating \exists^{∞}, and assume it is weakly locally modular. Then T_{P} is superrosy of thorn-rank ≤ 2.

Converse still open (true in SU-rank 1 case).

Linearity in thorn-rank 1 case

Proposition (Berenstein, V.)

Let T be superrosy of thorn-rank 1 , eliminating \exists^{∞}, and assume it is weakly locally modular. Then T_{P} is superrosy of thorn-rank ≤ 2.

Converse still open (true in SU-rank 1 case).

Trichotomy and the rank of the pair

Theorem (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then T_{P} is superrosy of thorn rank 1, 2 or ω. Moreover, for any lovely pair (M, P) of models of T and for any $a \in M$ we have:

- If $a \in M$ is trivial, $U\left(t p_{P}(a)\right) \leq 1(=1$ iff $a \notin d c l(\emptyset))$.
- If $a \notin P(M)$ is non-trivial, then $U\left(t_{P}(a)\right) \geq 2$.
- If M is non-trivial and linear (satisfies the CF property) then (M, P) has thorn-rank 2.
- If M induces the structure of an o-minimal expansion of a real closed field in a neighborhood of $a \notin P(M)$, then $U\left(t p_{P}(a)\right)=\omega$.

So, as in the SU-rank 1 case, linearity (weak local modularity) of T is equivalent to T_{P} having rank ≤ 2.

Trichotomy and the rank of the pair

Theorem (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then T_{P} is superrosy of thorn rank 1,2 or ω. Moreover, for any lovely pair (M, P) of models of T and for any $a \in M$ we have:

- If $a \in M$ is trivial, $U\left(t p_{P}(a)\right) \leq 1(=1$ iff $a \notin d c l(\emptyset))$.
- If $a \notin P(M)$ is non-trivial, then $U\left(t_{P}(a)\right) \geq 2$.
- If M is non-trivial and linear (satisfies the CF property) then (M, P) has thorn-rank 2.
- If M induces the structure of an o-minimal expansion of a real closed field in a neighborhood of $a \notin P(M)$, then $U\left(t_{p}(a)\right)=\omega$.

So, as in the SU-rank 1 case, linearity (weak local modularity) of T is equivalent to T_{P} having rank ≤ 2.

Geometry of weakly locally modular geometric structures

T weakly locally modular.
As in the SU-rank 1 case:

- For any lovely pair (M, P) of models of T, the geometry induced by the small closure acl $(-\cup P(M))$ is a disjoint union of trivial geometries and/or projective geometries over division rings.
- For any $M \models T$, the geometry of M is a disjoint union of subgeometries of projective geometries over division rings.

Weak local modularity and the CF property

Proposition (Berenstein, V.)

Let T be superrosy of thorn-rank 1 . Suppose T is weakly locally modular. Then in T there is no interpretable family of plane curves of dimension ≥ 2 (CF property).

Another candidate for linearity: weak one-basedness

Definition

We call a geometric theory T weakly one-based, if for any \bar{a} and A (in a sufficiently saturated model of T) there exists $\bar{a}^{\prime} \models \operatorname{tp}(\bar{a} / A)$ such that $\bar{a} \downarrow_{A} \bar{a}^{\prime}$ and $\bar{a} \downarrow_{\bar{a}^{\prime}} A$.

- T weakly one-based $\Rightarrow T$ weakly locally modular (converse still open)
- weak one-basedness coincides with weak local modularity (linearity) both in the SU-rank 1 case, and in the case of an o-minimal expansion of $(\mathbb{R},+,<)$

Another candidate for linearity: weak one-basedness

Definition

We call a geometric theory T weakly one-based, if for any $\overline{\bar{a}}$ and A (in a sufficiently saturated model of T) there exists $\bar{a}^{\prime} \models \operatorname{tp}(\bar{a} / A)$ such that $\bar{a} \downarrow_{A} \bar{a}^{\prime}$ and $\bar{a} \downarrow_{\bar{a}^{\prime}} A$.

- T weakly one-based $\Rightarrow T$ weakly locally modular (converse still open)
- weak one-basedness coincides with weak local modularity (linearity) both in the SU-rank 1 case, and in the case of an o-minimal expansion of $(\mathbb{R},+,<)$.

Weak one-basedness and the ω-categorical case

Recall: for an SU-rank 1ω-categorical T,
T_{P} is ω-categorical $\Longleftrightarrow T$ is linear.
In this case, if T is non-trivial, it interprets an infinite vector space over a finite field.

Theorem (Berenstein, V.)

Suppose T is a weakly one-based ω-categorical geometric theory. Then
(1) T_{P} is ω-categorical; (2) if T is nontrivial and superrosy of thorn rank 1 , then T_{P} interprets an infinite vector space over a finite field.

Generic expansions and structure induced on P

Generic Predicate

Geometricity, weak local modularity and weak one-basedness are preserved under generic predicate expansion, in the sense of Chatzidakis-Pillay.

Structure induced on P

Generic expansions and structure induced on P

Generic Predicate

Geometricity, weak local modularity and weak one-basedness are preserved under generic predicate expansion, in the sense of Chatzidakis-Pillay.

Structure induced on P
T geometric, (M, P) lovely pair of models of T.
Consider the set $P(M)$ together with the traces of all L-definable sets with parameters in M. The resulting theory T^{*} is again geometric. Moreover, if T is weakly locally modular or weakly one-based, then so is T^{*}.

Some questions

- Reducts of geometric theories are geometric. Is linearity (weak local modularity, weak one-basedness) preserved under reducts? True for SU-rank 1 theories (T_{P} having SU-rank ≤ 2 is preserved under reducts) and o-minimal theories extending DLO (by Trichotomy)
- For T superrosy of thorn rank 1 (eliminating \exists^{∞}):
- are 1,2 and ω the only possible values of the thorn rank of T_{P} ? (true for SU-rank 1 and o-minimal theories)
- does T being nontrivial
imply that the thorn rank of T_{P} is >1 ?

Some questions

- Is weak 1-basedness equivalent to weak local modularity? (true for SU-rank 1 structures and expansions of o-minimal groups)
- If T is weakly 1 -based or weakly locally modular, and ω-categorical, does T interpret an infinite vector space over a finite field?
- For any geometric T, does T_{P} have elimination of \exists^{∞} ? (true in the SU-rank 1 and o-minimal cases)

[^0]: Theorem
 \square

