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Geometric theories

Definition

A first order theory T is called geometric if

• in any model of T , acl satisfies the exchange property
(i.e. acl induces a pregeometry)

• T eliminates quantifier ∃∞
(equivalently, for any φ(x , ȳ) there is n ∈ ω such that
whenever |φ(M, ā)| > n, φ(M, ā) is infinite)

Examples

• strongly minimal theories

• supersimple SU-rank 1 theories

• o-minimal theories extending DLO

• superrosy theories of thorn-rank 1 eliminating ∃∞
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Linearity in the strongly minimal case
T strongly minimal.

• The following are equivalent:

(a) T is locally modular

(b) T is one-based
(A |̂

acleq(A)∩acleq(B)
B, or Cb(ā/A) ⊂ acleq(ā))

(c) T is linear
(whenever U(ab/A) = 1, U(Cb(ab/A)) ≤ 1)

• T ω-categorical ⇒ T is locally modular

• T locally modular ⇒ the geometry induced by acl in T is
either trivial, or projective or affine over a division ring (finite
field, if T is ω-categorical)

• T locally modular, nontrivial ⇒ T interprets an infinite
abelian group.
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Linearity in the SU-rank 1 case

T supersimple of SU-rank 1.

• T locally modular ⇒ T linear

• T linear ⇐⇒ T one-based

• T linear 6⇒ locally modular
(example: random subset of a vector space over a finite field)

• (Hrushovski) T ω-categorical 6⇒ T linear
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Linearity in the SU-rank 1 case

What about the geometry?

• V. (using pairs): T linear ⇒ the geometry of T is a disjoint
union of “subgeometries” of projective geometries over
division rings (finite fields, if T is ω-categorical)

• De Piro, Kim (using canonical bases): D a linear Lascar
strong type of SU-rank 1 ⇒ the geometry of D embeds in a
projective geometry over a division ring (finite field, if T is
ω-categorical)

• De Piro, Kim (using canonical bases);
Tomasic, Wagner (using group configuration):
T linear, nontrivial and ω-categorical ⇒
T interprets an infinite vector space over a finite field.
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Linearity in the o-minimal case

T o-minimal extending DLO.

Trichotomy Theorem (Peterzil, Starchenko)

Let M be an ω1-saturated model of T . Then for any a ∈ M
exactly one of the following holds:
(1) a is trivial;
(2) the structure that M induces on some convex neighborhood of
a is that of an ordered vector space over a division ring;
(3) the structure that M induces on some convex neighborhood of
a is that of an o-minimal expansion of a real closed field.

Definition

T is linear, if any a ∈ M |= T satisfies (1) or (2) (equivalently, if
T does not interpret an infinite field).
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Linearity in the o-minimal case

T is linear ⇐⇒ any interpretable normal family of plane curves in
T has dimension ≤ 1 (CF property)

Characterization of linear o-minimal expansions of divisible abelian
groups:

Theorem (Loveys, Peterzil)

Any linear o-minimal expansion of Th(R,+, <) is a reduct of the
theory of an ordered vector space over an ordered division ring
(possibly with constants). Conversely, any such reduct is linear.
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Linearity in the o-minimal case

T o-minimal extending DLO.

T locally modular ⇒ T linear

But the converse does not hold!

Example (Loveys, Peterzil)

T = Th(R,+, 0, 1, f |(−1,1)), where f (x) = πx .
T is o-minimal and linear, but not locally modular
(and not 1-based)
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More on Loveys-Peterzil example

Note: modularity ⇐⇒ whenever a ∈ cl(b, c1, . . . , cn), there is
c ∈ cl(c1, . . . , cn) such that a ∈ cl(b, c)

Take a = f (b − c1) + c2 such that b, c1, c2 are independent,
|b − c1| < 1 and b, c1 > n for any n ∈ N.

Then a ∈ acl(b, c1, c2), but there is no c ∈ acl(c1, c2) with
a ∈ acl(b, c).

Consider any d between b and c1:

a = f (b − d + d − c1) + c2 = f (b − d) + f (d − c1) + c2,
so if we work over d , we can take c = f (d − c1) + c2.

Local modularity fails: if we add a small set D, we can always find
b, c1 such that there is no d ∈ D between b and c1.

Need to localize at a dense subset!
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Elementary pairs

T a first order theory, L = L(T ), LP = L ∪ {P}.

Definition

Elementary pair of models of T (T -pair) is an LP -structure
(M,P), where P is a new unary relation distinguishing an
elementary substructure of M (i.e. P(M) � M).

The class of all such pairs is axiomatizable in LP .
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Pairs in the strongly minimal case

T strongly minimal.

TP = the theory of all T -pairs (M,P) with dim(M/P(M)) infinite.

TP is complete, and coincides with Poizat’s theory of “belles
paires”.

Theorem (Buechler)

TP is ω-stable and has
U-rank 1 iff T is trivial
U-rank 2 iff T is non-trivial and locally modular (linear)
U-rank ω otherwise.
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Pairs in the SU-rank 1 case

T supersimple of SU-rank 1.

“Beautiful pairs” (where M is |P(M)|+-saturated) do not behave
well in unstable case.

Definition

A pair (M,P) of models of T is lovely,
if any nonalgebraic 1-type q(x ,A) (in T ) over a small A ⊂ M has
realizations

• in P(M) (coheir property)

• and in M\aclL(A ∪ P(M)) (extension property).

(generalized later to the simple case by Ben Yaacov, Pillay and V.)
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Basic properties of lovely pairs in the SU-rank 1 case

Definition

A ⊂ (M,P) is P-independent, if A |̂
P(A)

P(M).

Proposition (V.)

• any T -pair embeds in a lovely one (in a P-independent way)

• lovely T -pairs are elementarily equivalent

• quantifier free LP -type of P-independent tuple in a lovely pair
determines its LP -type

• lovely T -pairs = sufficiently saturated models of their
(complete) theory TP

Theorem (V.)

TP is supersimple of SU-rank 1, 2 or ω.
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Linearity and lovely pairs in the SU-rank 1 case

We have the following characterization of linearity:

Theorem(V.)

For an SU-rank 1 theory T the following are equivalent:

(a) T is linear

(b) T is 1-based

(c) TP has SU-rank ≤ 2 (=2 if non-trivial)

(d) aclL = aclLP
in TP

(e) for some (any) lovely pair (M,P) the pregeometry
(M, acl(− ∪ P(M))) is modular

(f) TP is model complete



Geometry and lovely pairs of linear SU-rank 1 structures

Thus linearity ⇐⇒ modularity of localization at P(M)
(this is weaker than local modularity)

acl(− ∪ P(M)) is sometimes called the small closure, or scl(−).

What about the geometry (M/P, cl) of the small closure?

Fact

A modular geometry of dimension at least 4, where the closure of
any two points contains a third one, is a projective geometry over
some division ring.

The relation “|cl(a/P, b/P)| ≥ 3 or a/P = b/P” is an equivalence
on (M/P, cl), with no interaction between the classes.
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Fact

A modular geometry of dimension at least 4, where the closure of
any two points contains a third one, is a projective geometry over
some division ring.

The relation “|cl(a/P, b/P)| ≥ 3 or a/P = b/P” is an equivalence
on (M/P, cl), with no interaction between the classes.



Geometry and lovely pairs of linear SU-rank 1 structures

Theorem (V.)

Let T be a linear SU-rank 1 theory. Then

• (M/P, cl) is a disjoint union of trivial geometries and/or
projective geometries over division rings.

• The original geometry of M is a disjoint union of
“subgeometries” of projective geometries over division rings.

• In the ω-categorical case:
- TP is ω-categorical iff T is linear
- the division rings are finite fields, and the corresponding
vector spaces are definable in (TP)eq.



Geometry and lovely pairs of linear SU-rank 1 structures

Alternative approach via canonical bases (De Piro, Kim)

The geometry of a non-trivial linear SU-rank 1 Lascar strong type
D can be extended to a projective geometry over division ring by
adding canonical bases of surfaces in D3. In the ω-categorical case,
they deduce definability of vector spaces in T eq.



Pairs in the o-minimal case

T o-minimal expansion of Th(R,+, <, 0).

Definition

A T -pair (M,P) is dense, if P(M) 6= M and is P(M) is dense in
M.

Fact (van den Dries)

(a) Any T -pair embeds in a dense pair.
(b) Any two dense pairs are elementarily equivalent.
(c) The (complete) theory of dense pairs T d has quantifier
elimination down to ∃x ∈ P.

Note: same is true for lovely pairs of SU-rank 1 structures.
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Pairs of geometric structures

T geometric.

We define lovely pairs as in the SU-rank 1 case:

Definition

A pair (M,P) of models of T is lovely
if any nonalgebraic 1-type q(x ,A) (in T ) over a small A ⊂ M has
realizations

• in P(M) (coheir property)

• and in M\aclL(A ∪ P(M)) (extension property).



Pairs of geometric structures

T geometric.

We define lovely pairs as in the SU-rank 1 case:

Definition

A pair (M,P) of models of T is lovely
if any nonalgebraic 1-type q(x ,A) (in T ) over a small A ⊂ M has
realizations

• in P(M) (coheir property)

• and in M\aclL(A ∪ P(M)) (extension property).



Basic properties

As before, we have:

• any T -pair embeds in a lovely one (in a P-independent way)

• lovely T -pairs are elementarily equivalent

• quantifier free LP -type of P-independent tuple in a lovely pair
determines its LP -type

• lovely T -pairs = sufficiently saturated models of their
(complete) theory TP



SU-rank 1, o-minimal and thorn rank 1 cases

Lovely pair notion agrees with the old one in the SU-rank 1 case.

For o-minimal T (extending DLO), TP is exactly T d , the theory of
dense pairs.
So, in the o-minimal case, lovely pairs = sufficiently saturated
dense pairs.

Theorem (Berenstein, Ealy, Günaydin)

The theory of dense pairs of models of an o-minimal expansion of
(R,+, <) is superrosy of thorn rank ≤ ω.

This was generalized:

Theorem (Boxall)

Let T be superrosy of thorn rank 1, with elimination of ∃∞. Then
TP is superrosy, of thorn-rank ≤ ω.
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Weak local modularity

Theorem (Berenstein, V.)

Let T be a geometric theorem, and let TP be its lovely pairs
expansion. The the following are equivalent.

• for some (any) lovely pair (M,P) the pregeometry
(M, acl(− ∪ P(M))) = (M, scl) is modular

• aclL = aclLP
in TP

• for any (small) sets A,B in a (sufficiently saturated) model M
of T , there is (small) C ⊂ M such that C |̂ ∅ AB and
A |̂

acl(AC)∩acl(BC)
B

Definition

We call a geometric theory T satisfying the equivalent conditions
above weakly locally modular.
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Why weak?

Local modularity:

there is C such that for any A,B A |̂
acl(AC)∩acl(BC)

B.

Weak local modularity:

for any A,B there is C |̂ ∅ AB such that A |̂
acl(AC)∩acl(BC)

B.



SU-rank 1 and o-minimal cases

It follows from the theorem above that for an SU-rank 1 theory T ,
weak local modularity = linearity.

Proposition (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then T is weakly
locally modular iff T is linear (i.e. has the CF-property, or,
equivalently, does not interpret an infinite field).



Linearity in thorn-rank 1 case

Proposition (Berenstein, V.)

Let T be superrosy of thorn-rank 1, eliminating ∃∞, and assume it
is weakly locally modular. Then TP is superrosy of thorn-rank ≤ 2.

Converse still open (true in SU-rank 1 case).
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Trichotomy and the rank of the pair

Theorem (Berenstein, V.)

Let T be an o-minimal theory extending DLO. Then TP is
superrosy of thorn rank 1, 2 or ω. Moreover, for any lovely pair
(M,P) of models of T and for any a ∈ M we have:

• If a ∈ M is trivial, U(tpP(a)) ≤ 1 (= 1 iff a 6∈ dcl(∅)).
• If a 6∈ P(M) is non-trivial, then U(tpP(a)) ≥ 2.

• If M is non-trivial and linear (satisfies the CF property) then
(M,P) has thorn-rank 2.

• If M induces the structure of an o-minimal expansion of a real
closed field in a neighborhood of a 6∈ P(M), then
U(tpP(a)) = ω.

So, as in the SU-rank 1 case, linearity (weak local modularity) of
T is equivalent to TP having rank ≤ 2.
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T is equivalent to TP having rank ≤ 2.



Geometry of weakly locally modular geometric structures

T weakly locally modular.

As in the SU-rank 1 case:

• For any lovely pair (M,P) of models of T , the geometry
induced by the small closure acl(−∪P(M)) is a disjoint union
of trivial geometries and/or projective geometries over division
rings.

• For any M |= T , the geometry of M is a disjoint union of
subgeometries of projective geometries over division rings.



Weak local modularity and the CF property

Proposition (Berenstein, V.)

Let T be superrosy of thorn-rank 1. Suppose T is weakly locally
modular. Then in T there is no interpretable family of plane curves
of dimension ≥ 2 (CF property).



Another candidate for linearity: weak one-basedness

Definition

We call a geometric theory T weakly one-based, if for any ā and A
(in a sufficiently saturated model of T ) there exists ā′ |= tp(ā/A)
such that ā |̂

A
ā′ and ā |̂

ā′ A.

• T weakly one-based ⇒ T weakly locally modular
(converse still open)

• weak one-basedness coincides with weak local modularity
(linearity) both in the SU-rank 1 case, and in the case of an
o-minimal expansion of (R,+, <).
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Weak one-basedness and the ω-categorical case

Recall: for an SU-rank 1 ω-categorical T ,
TP is ω-categorical ⇐⇒ T is linear.
In this case, if T is non-trivial, it interprets an infinite vector space
over a finite field.

Theorem (Berenstein, V.)

Suppose T is a weakly one-based ω-categorical geometric theory.
Then
(1) TP is ω-categorical;
(2) if T is nontrivial and superrosy of thorn rank 1, then TP

interprets an infinite vector space over a finite field.



Generic expansions and structure induced on P

Generic Predicate

Geometricity, weak local modularity and weak one-basedness are
preserved under generic predicate expansion, in the sense of
Chatzidakis-Pillay.

Structure induced on P

T geometric, (M,P) lovely pair of models of T .

Consider the set P(M) together with the traces of all L-definable
sets with parameters in M. The resulting theory T ∗ is again
geometric. Moreover, if T is weakly locally modular or weakly
one-based, then so is T ∗.
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Some questions

• Reducts of geometric theories are geometric. Is linearity (weak
local modularity, weak one-basedness) preserved under
reducts? True for SU-rank 1 theories (TP having SU-rank ≤ 2
is preserved under reducts) and o-minimal theories extending
DLO (by Trichotomy)

• For T superrosy of thorn rank 1 (eliminating ∃∞):

• are 1, 2 and ω the only possible values of the thorn rank of
TP? (true for SU-rank 1 and o-minimal theories)

• does T being nontrivial
imply that the thorn rank of TP is > 1?



Some questions

• Is weak 1-basedness equivalent to weak local modularity?
(true for SU-rank 1 structures and expansions of o-minimal
groups)

• If T is weakly 1-based or weakly locally modular, and
ω-categorical, does T interpret an infinite vector space over a
finite field?

• For any geometric T , does TP have elimination of ∃∞? (true
in the SU-rank 1 and o-minimal cases)


